The purpose of this study was to investigate the effect of bufalin on the anti-proliferative activity of sorafenib in the human hepatocellular carcinoma (HCC) cell lines PLC/PRF/5 and Hep G-2 and to determine the relevant molecular mechanism. Concurrent treatment with sorafenib and bufalin at a fixed ratio (25:1) for 48 h resulted in synergistic growth inhibition in HCC cell lines as determined by CCK-8 cell viability assays. Exposure of both PLC/PRF/5 and Hep G-2 cells to this combination of sorafenib (6.25 μM) and bufalin (50 nM) resulted in noticeable increases in apoptotic cell death, as evidenced by the disruption of mitochondria, compared to treatment with either agent alone. Although both sorafenib (6.25 μM) and bufalin (250 nM) alone inhibited the phosphorylation of ERK, the reduction in pERK was more pronounced in the cells treated with a combination of bufalin (50 nM) and sorafenib (250 nM). Furthermore, the inhibitory effect of bufalin on pERK was blocked by the PI3kinase inhibitor LY294002, suggesting that the reduction in pERK induced by bufalin might be mediated by AKT in these two HCC cell lines. Taken together, the results of our study suggest that bufalin enhances the anti-cancer effects of sorafenib on PLC/PRF/5 and Hep G-2 by contributing to the downregulation of ERK.
This paper points out that the traditional design method of multi blade centrifugal fan are great uncertainty in selecting the structure parameters: lead to many design results, do many tests. Internal flow field of multi blade centrifugal fan was simulated with the computational fluid dynamics software Fluent, and the numerical results are analyzed. Comparison of the numerical results with the test results shows that numerical simulation has good accuracy and reliability. The design program and a design example is gived according to the design theory of multi blade centrifugal fan. Method is verified by numerical simulation for the example. Test results show that the design program is reliable.
In this paper, the aerodynamic characteristics of the rocket model that might be used in a cabin air-launched system have been studied through experiments in low speed wind tunnel. The angle of incidence range is 0-80°, and the speed is 17m/s or 25m/s, including typical flight conditions prior to engine ignition. Forces and moments were measured through six-component balance. It is found that vortex asymmetry appears under certain condition with zero side slip. Asymmetrical phenomenon leads to larger side force and yaw moment, which can affect the trajectory of the rocket and put the carrier aircraft at risk. In addition, changes in regulation of the pitching moment with angle of attack are important to longitudinal stability, so the model with convergent-expanded afterbody was designed to improve stability. The effects of nose bluntness and forebody strakes on side force and yaw moment were presented, and the differences of aerodynamic characteristics with pointed and blunt nose, with and without forebody strakes were described. Results show that nose bluntness delays the appearance of asymmetric vortex, and the maximum side force is reduced by at least 50%. The forebody strakes reduce side force and yaw moment by weakening the asymmetric vortical interactions. The results can provide some references for designing the cabin air-launched rocket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.