The structures, optical and electrical transport properties of SnO2 films, fabricated by rf sputtering method at different oxygen partial pressures, were systematically investigated. It has been found that preferred growth orientation of SnO2 film is strongly related to the oxygen partial pressure during deposition, which provides an effective way to tune the surface texture of SnO2 film. All films reveal relatively high transparency in the visible range, and both the transmittance and optical band gap increase with increasing oxygen partial pressure. The temperature dependence of resisitivities was measured from 380 K down to liquid helium temperatures. At temperature above K, besides the nearest‐neighbor‐hopping process, thermal activation processes related to two donor levels ( and 100 meV below the conduction band minimum) of oxygen vacancies are responsible for the charge transport properties. Below K, Mott variable‐range hopping conduction process governs the charge transport properties at higher temperatures, while Efros–Shklovskii (ES) variable‐range‐hopping conduction process dominates the transport properties at lower temperatures. Distinct crossover from Mott type to ES type variable‐range‐hopping conduction process at several to a few tens kelvin are observed for all SnO2 films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.