Objective The aim of this study was to investigate the correlation between non-dipper circadian rhythm of blood pressure (BP) and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). Methods and results All 257 patients with stage 1 to 5 CKD were enrolled in the study and classified into a CKD1-3 group and a CKD4-5 group according to renal function. The parameters and circadian rhythm of BP were measured by a GE Marquette Tonoport V Eng dynamic sphygmomanometer, and cardiac structure was examined by echocardiography. The incidence of abnormal circadian BP rhythm (non-dipper rhythm) was quite high (75.4% in all enrolled patients and 71.3% in the patients with normal BP levels) in CKD patients and increased with the deterioration of renal function. Changes of cardiac structure such as LVH in patients with non-dipper BP were more distinct than in patients with dipper BP. The development of left ventricular mass index (LVMI) correlated positively with the incidence of non-dipper BP rhythm. Multiple regression analysis showed that 24-h systolic BP (β = 0.417, P < 0.01), triglycerides (TG) (β = -0.132, P = 0.007), Hb (β = -0.394, P = 0.016) and gender (β = 0.158, P = 0.039) were independent risk factors of LVMI. Conclusions The incidence of non-dipper circadian rhythm of blood pressure was quite high in CKD patients and increased with the deterioration of renal function. Non-dipper circadian rhythm of BP is closely related with LVMI.
Background
Accurate assessment of acetabular defects and designing precise and feasible surgical plans are essential for positive outcomes of hip revision arthroplasty. Additive manufacturing (AM) is a novel technique to print physical object models. We propose a three-dimensional acetabular bone defect classification system aided with AM model, and further assess its reliability and validity under blinded conditions.
Methods
We reviewed 104 consecutive patients who underwent hip revision arthroplasty at our department between January 2014 and December 2019, of whom 45 had AM models and were included in the reliability and validity tests. Three orthopedic surgeons retrospectively evaluated the bone defects of these 45 patients with our proposed classification, made surgical plans, and repeated the process after 2 weeks. The reliability and validity of the classification results and corresponding surgical plans were assessed using the intra-class correlation coefficient or kappa correlation coefficient.
Results
The reliability and validity of the classification results were excellent. The mean initial intra-class correlation coefficient for inter-observer reliability was 0.947, which increased to 0.972 when tested a second time. The intra-observer reliability ranged from 0.958 to 0.980. Validity of the classification results also showed a high kappa correlation coefficient of 0.951–0.967. When considering corresponding surgical plans, the reliability and validity were also excellent, with intra-class correlation coefficients and kappa correlation coefficients measuring all over 0.9.
Conclusions
This three-dimensional acetabular defect classification has excellent reliability and validity. Using this classification system and AM models, accurate assessment of bone defect and reliable surgical plans could be achieved. This classification aided with AM is a promising tool for surgeons for preoperative evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.