In this paper, a creative collocation-type numerical method, the Finite Line Method (FLM), is proposed for solving general convection-diffusion equations. The method is based on the use of a finite number of lines crossing each collocation point, and the Lagrange polynomial interpolation formulation to construct the shape functions over each line. The directional derivative technique is proposed to derive the first-order partial derivatives of any physical variables with respect to the global coordinates for the high-dimensional problems from the lines' ones and the high-order derivatives are evaluated from a recurrence formulation. The derived spatial partial derivatives are directly substituted into the governing partial differential equations and related boundary conditions of the convection-diffusion equations to set up the system of equations. The finite number of lines crossing each collocation point is called the line set. To evaluate the convection and diffusion terms accurately, two different line sets are used for these two terms, which are called the convection line set and central line set, respectively. The former is formed according to the velocity direction and is used for performing the upwind scheme in the computation of the convection term, and the latter is formed by the crossed lines including the collocation point at the center. A numerical example will be given to verify the correctness and stability of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.