More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34-Å resolution X-ray crystallographic structure of a previously uncharacterized 'domain of unknown function' 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyses the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologues from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus, DUF1792 represents a new family of glycosyltransferases; therefore, we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target.
Motivated by the study of several problems in algebraic graph theory, we study finite primitive permutation groups whose point stabilizers are soluble. Such primitive permutation groups are divided into three types: affine, almost simple and product action, and the product action type can be reduced to the almost simple type. This paper gives an explicit list of the soluble maximal subgroups of almost simple groups. The classification is then applied to classify edge-primitive s-arc transitive graphs with s 4, solving a problem proposed by Richard M. Weiss (1999).
Accumulating evidence has shown that hydrogen sulfide (H₂S) acts as a signaling regulator in plants. Here we show that H₂S delays the postharvest senescence of broccoli in a dose-dependent manner. H₂S maintains higher levels of metabolites, such as carotenoids, anthocyanin, and ascorbate, and reduces the accumulation of malondialdehyde, H₂O₂, and the superoxide anion. Further investigations showed that H₂S sustained higher activities of guaiacol peroxidase, ascorbate peroxidase, catalase, and glutathione reductase and lower activities of lipoxygenase, polyphenol oxidase, phenylalanine ammonia lyase, and protease than those of water control. Moreover, the expression of the chlorophyll degradation related genes BoSGR, BoCLH2, BoPaO, BoRCCR, as well as cysteine protease BoCP1 and lipoxygenase gene BoLOX1, was down-regulated in postharvest broccoli treated with H₂S. The functions of H₂S on the senescence of other vegetables and fruits suggest its universal role acting as a senescence regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.