Efficiently discovering molecules that meet various property requirements can significantly benefit the drug discovery industry. Since it is infeasible to search over the entire chemical space, recent works adopt generative models for goal-directed molecular generation. They tend to utilize the iterative processes, optimizing the parameters of the molecular generative models at each iteration to produce promising molecules for further validation. Assessments are exploited to evaluate the generated molecules at each iteration, providing direction for model optimization. However, most previous works require a massive number of expensive and time-consuming assessments, e.g., wet experiments and molecular dynamic simulations, leading to the lack of practicability. To reduce the assessments in the iterative process, we propose a costeffective evolution strategy in latent space, which optimizes the molecular latent representation vectors instead. We adopt a pre-trained molecular generative model to map the latent and observation spaces, taking advantage of the large-scale unlabeled molecules to learn chemical knowledge. To further reduce the number of expensive assessments, we introduce a pre-screener as the proxy to the assessments. We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques, showing that the proposed framework achieves better performance with fewer assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.