Plant pathogenic fungi could cause significant losses to agricultural productions. To discover new pesticides with novel structures and unique mechanisms of action, a series of novel acetophenone derivatives containing 1,3,4-thiadiazole-2-thioethers...
To investigate the effect of spatial configuration on the biological activity of the compounds, a series of chiral mandelic acid derivatives with a moiety of 1,3,4-oxadiazole thioether have been designed and synthesized. Bioassay results demonstrated that most title compounds with the S-configuration exhibited better in vitro antifungal activity against three plant fungi, such as H3′ (EC 50 = 19.3 μg/mL) against Gibberella saubinetii, which was approximately 16 times higher than that of H3 (EC 50 = 317.0 μg/mL). CoMFA and CoMSIA models were established for 3D-QSAR analysis and provided an important support for further optimization of this series of compounds. Comparing the preliminary mechanism studies between enantiomers (H3 and H3′) found that the S-configuration compound (H3′) exhibited a stronger ability to destroy the surface structure of G. saubinetii mycelia, causing the leakage of intracellular substances to accelerate and the growth of the hyphae to be inhibited. The results provided a novel view for the further optimization of this series of active compounds and deep mechanism study of chiral pesticides.
Plant diseases caused by phytopathogenic fungi are a serious threat in the process of crop production and cause large economic losses to global agriculture. To obtain high-antifungal-activity compounds with novel action mechanisms, a series of 4-substituted mandelic acid derivatives containing a 1,3,4-oxadiazole moiety were designed and synthesized. In vitro bioassay results revealed that some compounds exhibited excellent activity against the tested fungi. Among them, the EC50 values of E13 against Gibberella saubinetii (G. saubinetii), E6 against Verticillium dahlia (V. dahlia), and E18 against Sclerotinia sclerotiorum (S. sclerotiorum) were 20.4, 12.7, and 8.0 mg/L, respectively, which were highly superior to that of the commercialized fungicide mandipropamid. The morphological studies of G. saubinetii with a fluorescence microscope (FM) and scanning electron microscope (SEM) indicated that E13 broke the surface of the hyphae and destroyed cell membrane integrity with increased concentration, thereby inhibiting fungal reproduction. Further cytoplasmic content leakage determination results showed a dramatic increase of the nucleic acid and protein concentrations in mycelia with E13 treatment, which also indicated that the title compound E13 could destroy cell membrane integrity and affect the growth of fungi. These results provide important information for further study of the mechanism of action of mandelic acid derivatives and their structural derivatization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.