The presence of various counteranions in the interfacial region of the silicate−surfactant mesophase introduces opportunities for manipulation of the phase structure. Well-ordered three-dimensional hexagonal P63/mmc, cubic Pm3̄n, two-dimensional hexagonal p6mm, and cubic Ia3̄d mesoporous materials have been synthesized with the same surfactant (cetyltriethylammonium bromide), depending on the kind of acids. The counteranions of acidic media have resulted in increasing surfactant packing parameter g in the order SO4 2- < Cl- < Br- < NO3 -, which leads to different formation routes to the mesostructures. It has been found that the mesophases are always transformed from the lower curvature one into the higher curvature one in the acidic synthesis gel. The combination of X-ray diffraction patterns, scanning electron microscope images, and high-resolution transmission electron microscope images presented visible evidence for the mesostructural constructions. In particular, the synthesis of a cubic Pm3̄n mesoporous molecular sieve was studied in the presence of trimethylbenzene (TMB) isomers. The rate of transformation is greatly affected by the structure of the TMB isomers and their content; 1,2,3-TMB was the most favorable to the stabilization of the p6mm hexagonal mesophase, 1,3,5-TMB was the least favorable, and 1,2,4-TMB showed intermediate behavior.
Hierarchical silica nanotubes with radially oriented mesoporous channels perpendicular to the central axis of the tube were synthesized by using self‐assembled chiral anionic surfactant, co‐structure directing agent (CSDA) and silica precursor. The average inner diameter and the wall thickness were ∼94, ∼62, and ∼62 nm and to ∼27, ∼33, and ∼45 nm, respectively, by manipulating the synthesis gel composition, while the diameter of the wall mesopores was kept constant at ∼4 nm. These materials with such a unique structure were produced only with chiral surfactant and achiral or racemic surfactant did not give rise to mesoporous silica nanotubes. The existence of helicity in the lipid bilayer template was confirmed by means of circular dichroism spectroscopy. The mesoporous penetrating from outside to inside of silica nanotubes are thought to originate from the initial formation of self‐assembled lipid tubes with helical bilayers, which in turn re‐assemble to form the mesopores in the wall of the nanotubes upon addition of co‐structure directing agent and silica source.
Background Culicoides-borne orbiviruses, such as bluetongue virus (BTV) and African horse sickness virus (AHSV), are important pathogens that cause animal epidemic diseases leading to significant loss of domestic animals. This study was conducted to identify Culicoides-borne arboviruses and to investigate the associated infections in local livestock in Yunnan, China.Methods Culicoides were collected overnight in Mangshi City using light traps during August 2013. A virus was isolated from the collected Culicoides and grown using baby hamster kidney (BHK-21), Vero, Madin-Darby bovine kidney (MDBK) and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by polyacrylamide gel (PAGE) analysis. A full-length cDNA copy of the genome was amplified and sequenced. Serological investigations were conducted in local cattle, buffalo and goat using plaque-reduction neutralization tests.ResultsWe isolated a viral strain (DH13C120) that caused cytopathogenic effects in BHK-21, Vero, MDBK and C6/36 cells. Suckling mice inoculated intracerebrally with DH13C120 showed signs of fatal neurovirulence. PAGE analysis indicated a genome consisting of 10 segments of double-stranded RNA that demonstrated a 3–3–3–1 pattern, similar to the migrating bands of Tibet orbivirus (TIBOV). Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), sub-core-shell (T2, and outer core (T13) proteins revealed that DH13C120 clustered with TIBOV, and the amino acid sequences of DH13C120 virus shared more than 98% identity with TIBOV XZ0906. However, outer capsid protein VP2 and outer capsid protein VP5 shared only 43.1 and 79.3% identity, respectively, indicating that the DH13C120 virus belongs to TIBOV, and it may represent different serotypes with XZ0906. A serosurvey revealed the presence of neutralizing antibodies with 90% plaque-reduction neutralization against TIBOV DH13C120 in local cattle (44%), buffalo (20%), and goat (4%). Four-fold or higher levels of TIBOV-2-neutralizing antibody titers were detected between the convalescent and acute phases of infection in local livestock.ConclusionsA new strain of TIBOV was isolated from Culicoides. This study provides the first evidence of TIBOV infection in livestock in Yunnan, China, and suggests that TIBOV could be a potential pathogen in livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.