In recent years, as people’s awareness of energy conservation, environmental protection, and sustainable development has increased, discussions related to electric vehicles (EVs) have aroused public debate on social media. At some point, most consumers face the possible risks of EVs—a critical psychological perception that invariably affects sales of EVs in the consumption market. This paper chooses to deconstruct customers’ perceived risk from third-party comment data in social media, which has better coverage and objectivity than questionnaire surveys. In order to analyze a large amount of unstructured text comment data, the natural language processing (NLP) method based on machine learning was applied in this paper. The measurement results show 15 abstracts in five consumer perceived risks to EVs. Among them, the largest number of comments is that of “Technology Maturity” (A13) which reached 25,329, and which belongs to the “Performance Risk” (PR1) dimension, indicating that customers are most concerned about the performance risk of EVs. Then, in the “Social Risk” (PR5) dimension, the abstract “Social Needs” (A51) received only 3224 comments and “Preference and Trust Rank” (A52) reached 22,324 comments; this noticeable gap indicated the changes in how consumers perceived EVs social risks. Moreover, each dimension’s emotion analysis results showed that negative emotions are more than 40%, exceeding neutral or positive emotions. Importantly, customers have the strongest negative emotions about the “Time Risk” (PR4), accounting for 54%. On a finer scale, the top three negative emotions are “Charging Time” (A42), “EV Charging Facilities” (A41), and “Maintenance of Value” (A33). Another interesting result is that “Social Needs” (A51)’s positive emotional comments were larger than negative emotional comments. The paper provides substantial evidence for perceived risk theory research by new data and methods. It can provide a novel tool for multi-dimensional and fine-granular capture customers’ perceived risks and negative emotions. Thus, it has the potential to help government and enterprises to adjust promotional strategies in a timely manner to reduce higher perceived risks and emotions, accelerating the sustainable development of EVs’ consumption market in China.
The study of the prediction of stock market volatility is of great significance to rationally control financial market risks and increase excessive investment returns and has received extensive attention from academic and commercial circles. However, as a dynamic and complex system, the stock market is affected by multiple factors and has a comprehensive capability to include complex financial data. Given that the explanatory variables of influencing factors are diverse, heterogeneous and complex, the existing intelligent algorithms have great limitations for the analysis and processing of multi-source heterogeneous data in the stock market. Therefore, this study adopts the edge weight and information transmission mechanism suitable for subgraph data to complete node screening, the gate recurrent unit (GRU) and long short-term memory (LSTM) to aggregate subgraph nodes. The compiled data contain the metapaths of three types of index data, and the introduction of the association relationship attention dimension effectively mines the implicit meanings of multi-source heterogeneous data. The metapath attention mechanism is combined with a graph neural network to complete the classification of multi-source heterogeneous graph data, by which the prediction of stock market volatility is realized. The results show that the above method is feasible for the fusion of heterogeneous stock market data and the mining of implicit semantic information of association relations. The accuracy of the proposed method for the prediction of stock market volatility in this study is 16.64% higher than that of the dimensional reduction index and 14.48% higher than that of other methods for the fusion and prediction of heterogeneous data using the same model.
Based upon quadratic polynomials over the finite field, a new class of frequency hopping sequences with large family size suitable for applications in time/frequency hopping CDMA systems, multi-user radar and sonar systems is proposed and investigated. It is shown that the new time/frequency hopping sequences have at most one hit in their autocorrelation functions and at most two hits in their crosscorrelation functions except for a special case, and their family size is much larger than the conventional quadratic hopping sequences. The percentage of full collisions for the new quadratic hopping sequences is discussed. In addition, the average number of hits for the new quadratic hopping sequences, quadratic congruence sequences, extended quadratic congruence sequences and the general linear hopping sequences are also derived.code division multiple access, design of sequences, frequency hopping sequences, time hopping sequences The design of time/frequency hopping sequences suitable for use in frequency hopping (FH) or time hopping (TH) code division multiple access (CDMA) systems, multiuser radar and sonar systems has remained of great interest in recent years [1,2] . Although the nature and physical goals of various TH/FH CDMA systems and multiuser radar and sonar systems are quite different, the requirements imposed on the hopping signals, however, are almost identical. In FH CDMA systems, the address assignment must be achieved in such a way that a1) there is no ambiguity about the sender and the information it transmits, and a2) the received signal must interfere as little as possible with the reception of signals from other users. In multiple user radar and sonar systems, the signals must b1) posses high range and Doppler resolution and b2) allow for as little as possible crosstalk between different users. While conditions a2) and b2) are clearly similar, the simi-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.