The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.
BackgroundIn the present study we identified a novel gene, Homo Sapiens Chromosome 1 ORF109 (c1orf109, GenBank ID: NM_017850.1), which encodes a substrate of CK2. We analyzed the regulation mode of the gene, the expression pattern and subcellular localization of the predicted protein in the cell, and its role involving in cell proliferation and cell cycle control.MethodsDual-luciferase reporter assay, chromatin immunoprecipitation and EMSA were used to analysis the basal transcriptional requirements of the predicted promoter regions. C1ORF109 expression was assessed by western blot analysis. The subcellular localization of C1ORF109 was detected by immunofluorescence and immune colloidal gold technique. Cell proliferation was evaluated using MTT assay and colony-forming assay.ResultsWe found that two cis-acting elements within the crucial region of the c1orf109 promoter, one TATA box and one CAAT box, are required for maximal transcription of the c1orf109 gene. The 5′ flanking region of the c1orf109 gene could bind specific transcription factors and Sp1 may be one of them. Employing western blot analysis, we detected upregulated expression of c1orf109 in multiple cancer cell lines. The protein C1ORF109 was mainly located in the nucleus and cytoplasm. Moreover, we also found that C1ORF109 was a phosphoprotein in vivo and could be phosphorylated by the protein kinase CK2 in vitro. Exogenous expression of C1ORF109 in breast cancer Hs578T cells induced an increase in colony number and cell proliferation. A concomitant rise in levels of PCNA (proliferating cell nuclear antigen) and cyclinD1 expression was observed. Meanwhile, knockdown of c1orf109 by siRNA in breast cancer MDA-MB-231 cells confirmed the role of c1orf109 in proliferation.ConclusionsTaken together, our findings suggest that C1ORF109 may be the downstream target of protein kinase CK2 and involved in the regulation of cancer cell proliferation.
Apoptosis-inducing factor (AIF) plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC). In a group of RCC specimens, 84% (43 out of 51) had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.