Water masses and their variability play vital roles in regulating ocean circulation, material exchanges and biogeochemical processes. However, there is still a lack of quantitative analysis of water mass distributions in coastal waters of the South China Sea. Here, two oceanographic cruise observations in April and May 2016 are used to quantify water mass distributions, pathways and mixture, and their intraseasonal variability off western Guangdong during the spring monsoon transition. Temperature and salinity observations qualitatively reveal that there are three types of water masses: the Pearl River diluted water (PRDW, salinity (S) = 22 psu, potential temperature (θ) = 25 °C), the South China Sea surface water (SCSSW, S = 34 psu, θ = 28 °C) and the South China Sea subsurface water mass (SCSSUW, S = 34.5 psu, θ = 17 °C). Their relative contributions and intraseasonal variability are quantified using the Optimum Multiparameter (OMP) method. The PRDW is largely confined to the upper 10 m layer in shallow nearshore waters (depths < 30 m), with a maximum contribution >90% near the Pearl River Estuary. The SCSSW mainly dominates the rest of the surface layer above 20 m, with a contribution >50% in offshore regions. The layer below 20 m is primarily composed of ~60% SCSSW and ~40% SCSSUW. A comparison between the two different observations suggests that the PRDW tends to expand southwestward and the SCSSUW spreads offshore, whereas the SCSSW moves landward and is situated underneath the surface fresh PRDW. These characteristics are very likely associated with the wind transition from weak southeasterly in April to strong northeasterly in May, which enhances the southwestward coastal current and the onshore surface Ekman transport from offshore waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.