Abstract-We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.