The disposal of soil containing humic acid (HA) poses an increasingly difficult problem for geotechnical environmental engineering. In this study, the unconfined compressive strength (UCS) test of cement-soil with different HA contents is conducted to analyze the effect of HA on the strength of cement-soil. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and X-ray diffraction (XRD) experiments reveal the effective mechanism of HA on the strength of cement-soil from the microscopic level. The results show that the strength of cement-soil decreases gradually with the increase of HA content. The failure mode of cement-soil slightly changed from brittle failure to plastic failure. The microscopic test shows that the incorporation of HA will lead to the apparent enlargement of the pores in the cement-soil. The large pores in the sample increase, the small micropores decrease, and the structure tends to be loose and overhead. The increased HA content added will significantly reduce the cement hydration products and destroy the cementation of the hydration products.
The organic soil is widely distributed around Dianchi Lake in Kunming, which is rich in the humic group (HG). In order to explore the effect of HG on the strength development of organic soil, this paper adopts the method of adding humic acid (HA) reagent into the undisturbed cohesive soil (blending method) and soaking it in fulvic acid (FA) solution (steeping method) to simulate the organic soil. Then, the effect of HG on soil is analyzed by the unconfined compressive strength (UCS) and the scanning electron microscope (SEM) tests. The UCS test shows that HA can significantly reduce the UCS of the samples, and it continues to decrease with the increase of the HA reagent content. FA can substantially enhance the UCS of the samples, which continues to increase with the concentration of FA solution (decreasing the pH value). Under each HG condition, the steeping of FA can significantly increase the UCS of the sample when the content of the HA reagent is less than 10%, and the growth rate of the UCS decreases when it is greater than 10%. With the increase of steeping age, the UCS of the 5% HA samples continued to increase and gradually became stable, and when the content of the HA reagent is more than 5%, the UCS curve first increases and then decreases. The SEM test shows that adding HA reagent can significantly increase the pore size, improve the connectivity between the pores, and weaken the connection of the soil structure. The steeping of FA can reduce the pore size, weaken the connectivity between the pores, and strengthen the connection of the sample structure.
Many peat soils are distributed around plateau lakes, and the reinforcement of peat soils with high organic matter content by ordinary cement cannot meet the actual engineering requirements. In order to obtain better mechanical properties and durability of the reinforcement, this experiment prepared peat soil by mixing humic acid reagent into the alluvial clay soil with low organic matter content. The cement soil samples were prepared by adding cement and ultrafine cement (UFC) by stirring method; the samples were then soaked in fulvic acid solution to simulate the cement soil in the peat soil environment. Using the unconfined compressive strength (UCS) test, scanning electron microscope (SEM) test, and pores and cracks analysis system (PCAS) test, the effect of UFC content change on cement soil’s humic acid erosion resistance was explored, and the optimal UFC content range was sought. The results of the UCS test show that with an increase in immersion time, the strength curves of cement soil samples gradually increase to the peak strength and then decrease. Significant differences in the time correspond to the peak strength, and the overall presentation is two processes: the strength enhancement stage and the corrosion stage of the sample. The incorporation of UFC makes the cement soil in the peat soil environment exhibit excellent corrosion resistance, and the optimal UFC content is 10%. The results of the SEM and PCAS tests show that the microstructure of cement soil after immersion time exceeds 90 days, increases with an increase in immersion time, and its structural connectivity gradually weakens. The excellent characteristics of UFC particles, such as small particle size, narrow particle size distribution, fast hydration reaction rate, high hydration degree, and many hydration products, weakened the adverse effects of humic acid on the cement soil structure to a certain extent. Therefore, although the number of macropores increases, they are not connected. It still presents a relatively compact honeycomb overall structure, which correlates well with the UCS results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.