Starting with multipotent progenitors, hematopoietic lineages are specified by lineage-restricted transcription factors. The transcription factors that determine the decision between lymphoid and myeloid cell fates, and the underlying mechanisms, remain largely unknown. Here, we report that enforced expression of C/EBPalpha and C/EBPbeta in differentiated B cells leads to their rapid and efficient reprogramming into macrophages. C/EBPs induce these changes by inhibiting the B cell commitment transcription factor Pax5, leading to the downregulation of its target CD19, and synergizing with endogenous PU.1, an ETS family factor, leading to the upregulation of its target Mac-1 and other myeloid markers. The two processes can be uncoupled, since, in PU.1-deficient pre-B cells, C/EBPs induce CD19 downregulation but not Mac-1 activation. Our observations indicate that C/EBPalpha and beta remodel the transcription network of B cells into that of macrophages through a series of parallel and sequential changes that require endogenous PU.1.
Summary
Recent studies point to a pivotal role of polycomb repressive complex 2 (PRC2) in stem cell function and cancer. Loss of function approaches targeting individual PRC2 subunits have however generated findings that are difficult to reconcile. Here, we prevent assembly of both Ezh1- and Ezh2-containing PRC2 complexes by conditional deletion of Eed, a core subunit, and assess hematopoiesis. We find that deletion of Eed exhausts adult bone marrow HSCs, although fetal liver HSCs are produced in normal numbers. Eed null neonatal HSCs express HSC signature genes, but are defective in maintenance and differentiation. Comparative gene expression profiling revealed that neonatal and adult HSCs lacking Eed upregulated gene sets of conflicting pathways. Deletion of Cdkn2a, a PRC2 target gene, in Eed null mice enhances HSPC survival but fails to restore HSC functions. Taken together, our findings define developmental stage-specific requirements for canonical PRC2 complexes in normal HSC function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.