Background: N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in gastric cancer (GC) tumourigenesis, providing novel insights into the molecular pathogenesis of GC.However, the involvement of Wilms' tumour 1-associated protein (WTAP), a key component of m6A methylation, in GC progression is controversial. Here, we investigated the biological role and underlying mechanism of WTAP in GC. Methods: We determined WTAP expression using tissue microarrays and The CancerGenome Atlas (TCGA) data set, which was used to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). CIBERSORT was used to determine WTAP expression in 22 immune cell types. Results:Wilms' tumour 1-associated protein was highly expressed in GC, which indicated a poor prognosis, and WTAP expression served as an independent predictor of GC survival. By WGCNA, GO, KEGG and core gene survival analyses, we found that high WTAP expression correlated with RNA methylation and that low expression correlated with a high T cell-related immune response. CIBERSORT was used to correlate low WTAP expression with T lymphocyte infiltration. Conclusion: RNA methylation and lymphocyte infiltration are the main causes of high WTAP expression and poor prognosis, respectively. K E Y W O R D S differentially expressed genes, DNA methylation, gastric cancer, N6-methyladenosine (m6A) methylation, WTAP | 4453 LI et aL.
Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3′-untranslated Region (3′-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.