A hexanucleotide repeat expansion (HRE) in the C9orf72 gene has been identified as the most common mutation in amyotrophic lateral sclerosis (ALS) among Caucasian populations. We sought to comprehensively evaluate genetic and epigenetic variants of C9orf72 and the contribution of the HRE in Chinese ALS cases. We performed fragment-length and repeat-primed polymerase chain reaction to determine GGGGCC copy number and expansion within the C9orf72 gene in 1092 sporadic ALS (sALS) and 1062 controls from China. We performed haplotype analysis of 23 single-nucleotide polymorphisms within and surrounding C9orf72. The C9orf72 HRE was found in 3 sALS patients (0.3%) but not in control subjects (p = 0.25). For 2 of the cases with the HRE, genotypes of 8 single-nucleotide polymorphisms flanking the HRE were inconsistent with the haplotype reported to be strongly associated with ALS in Caucasian populations. For these 2 individuals, we found hypermethylation of the CpG island upstream of the repeat, an observation not detected in other sALS patients (p< 10(-8)) or controls. The detailed analysis of the C9orf72 locus in a large cohort of Chinese samples provides robust evidence that may not be consistent with a single Caucasian founder event. Both the Caucasian and Chinese haplotypes associated with HRE were highly associated with repeat lengths >8 repeats implying that both haplotypes may confer instability of repeat length.
Mitochondrial biogenesis is one of the generally accepted regulatory mechanisms in the heart under chronic hypoxia. The precise quantity and quality control of mitochondria is critical for the survival and function of cardiomyocytes. Mitochondrial autophagy, also known as mitophagy, which selectively eliminates dysfunctional and unwanted mitochondria, is the most important type of mitochondrial quality control. However, the detailed molecular mechanisms of mitophagy in cardiomyocytes have been largely undefined. The present study investigated the role of adenosine 5′-monophosphate-activated protein kinase (AMPK) in mitophagy regulation in cardiomyocytes under chronic hypoxia. H9c2 cells were cultured under hypoxic conditions (1% O2) for different time periods. Mitochondrial biogenesis was confirmed and hypoxia was found to induce the collapse of mitochondrial membrane potential (ΛΨm) and increase the number of dysfunctional mitochondria. As expected, mitochondrial autophagy was increased significantly in cardiomyocytes exposed to hypoxic conditions for 48 h. AMPK was activated under hypoxia. Notably, when the activation of AMPK was enhanced by the AMPK agonist AICAR, mitochondrial autophagy was increased accordingly. By contrast, when AMPK activation was blocked, mitochondrial autophagy was decreased and cardiomyocyte apoptosis was increased. In conclusion, in the present study, mitophagy was activated and played a crucial role in cardioprotection under chronic hypoxia. AMPK was involved in mitophagy regulation, thereby providing a potential therapeutic target for heart diseases associated with chronic hypoxia.
PurposeRecent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3′-3′-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer.MethodsGrouped C57BL/6 and congenic B cell deficient mice (B−/−) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence.ResultsTLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B−/−) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B−/− mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B−/− mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts.ConclusionsCombination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer.
Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated, Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy using Listeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10 Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-γ ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60 % of the mice. ELISpot and immunohistochemistry of CD8+ cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-γ production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.