High-amylose starch is a source of resistant starch (RS) which has a great benefit on human health. A transgenic rice line (TRS) enriched amylose and RS had been developed by antisense RNA inhibition of starch branching enzymes. In this study, the native starch granules were isolated from TRS grains as well as the wild type, and their crystalline type was carefully investigated before and after acid hydrolysis. In high-amylose TRS rice, the C-type starch, which might result from the combination of both A-type and B-type starch, was observed and subsequently confirmed by multiple physical techniques, including X-ray powder diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared. Moreover, the change of starch crystalline structure from C- to B-type during acid hydrolysis was also observed in this RS-rich rice. These data could add to our understanding of not only the polymorph structure of cereal starch but also why high-amylose starch is more resistant to digestion.
Solid-state NMR techniques have been employed to investigate the surface acidic properties of TiO2 and sulfated TiO2, as well as their photocatalytic activities toward 2-propanol. The multinuclear MAS NMR experiments clearly revealed that three different types of Brønsted acid sites with much stronger acid strength were generated after the sulfation of TiO2. Due to the enhanced Brønsted acidity, the protonation of 2-propanol can occur more easily, preferentially leading to the formation of Ti-bound 2-propoxy species on the SO42-/TiO2 catalyst The 2-propoxy species can be directly converted to CO2 and thus the photocatalytic activity of sulfated TiO2 catalyst is remarkably enhanced. For comparison, both hydrogen-bonded 2-propanol and Ti-bound 2-propoxy species are present on the TiO2 catalyst with the former being predominant The hydrogen-bonded 2-propanol species are oxidated into acetone molecules that are difficult to further convert into CO2, and the conversion of 2-propoxy species to 2-propanol hampers the direct mineralization of 2-propoxy species on the TiO2 catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.