In this paper we give mathematical proofs of two new results relevant to evaluating algebraic functions over a box-shaped region: (i) using interval arithmetic in centered form is always more accurate than standard affine arithmetic, and (ii) modified affine arithmetic is always more accurate than interval arithmetic in centered form. Test results show that modified affine arithmetic is not only more accurate but also much faster than standard affine arithmetic. We thus suggest that modified affine arithmetic is the method of choice for evaluating algebraic functions, such as implicit surfaces, over a box.
This paper extends the modified affine arithmetic in matrix form method for bivariate polynomial evaluation and algebraic curve plotting in 2D to modified affine arithmetic in tensor form for trivariate polynomial evaluation and algebraic surface plotting in 3D. Experimental comparison shows that modified affine arithmetic in tensor form is not only more accurate but also much faster than standard affine arithmetic when evaluating trivariate polynomials.
This paper examines recursive Taylor methods for multivariate polynomial evaluation over an interval, in the context of algebraic curve and surface plotting as a particular application representative of similar problems in CAGD. The modified affine arithmetic method (MAA), previously shown to be one of the best methods for polynomial evaluation over an interval, is used as a benchmark; experimental results show that a second order recursive Taylor method (i) achieves the same or better graphical quality compared to MAA when used for plotting, and (ii) needs fewer arithmetic operations in many cases. Furthermore, this method is simple and very easy to implement. We also consider which order of Taylor method is best to use, and propose that second order Taylor expansion is generally best. Finally, we briefly examine theoretically the relation between the Taylor method and the MAA method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.