A real-time fault diagnosis method utilizing an adaptive genetic algorithm to optimize a back propagation (BP) neural network is intended to achieve real-time fault detection of a liquid rocket engine (LRE). In this paper, the authors employ an adaptive genetic algorithm to optimize a BP neural network, produce real-time predictions regarding sensor data, compare the projected value to the actual data collected, and determine whether the engine is malfunctioning using a threshold judgment mechanism. The proposed fault detection method is simulated and verified using data from a certain type of liquid hydrogen and liquid oxygen rocket engine. The experiment results show that this method can effectively diagnose this liquid hydrogen and liquid oxygen rocket engine in real-time. The proposed method has higher system sensitivity and robustness compared with the results obtained from a single BP neural network model and a BP neural network model optimized by a traditional genetic algorithm (GA), and the method has engineering application value.
Currently, considerable efforts are being focused on the development of reusable rockets and smart rockets due to the heavy requirements of future next-generation aerospace transportation. Safety, low-launching cost, and repeatability are expected from liquid rocket for fulfilling the big dreams of space transportation, exploration, and travelling. Therefore, research on fault detection of the liquid rocket engines (LRE) is critical for satisfying the above claims. Therefore, a comprehensive survey on the research and development of fault diagnosis systems and methods for the liquid rocket engines is presented. First, development history of liquid rocket engine diagnostic systems is reviewed thoroughly. Then three broad headings of the fault detection approaches of liquid rocket engines are divided through the summary and analysis of the existing methods, including approaches using signal processing, model-driven approach, and approach using artificial intelligence (AI). Then the paper discusses the concrete algorithms according to the classification features of the algorithms. In the end, the future developments of the fault detection approaches are presented, which will mainly pay attention to the reusability and intelligence of the rockets.
Health monitoring and fault diagnosis of liquid rocket engine (LRE) are the most important concerning issue for the safety of rocket’s flying, especially for the man-carried aerospace engineering. Based on the sensor measurement signals of a certain type of hydrogen-oxygen rocket engine, this paper proposed a real-time fault detection approach using a genetic algorithm-based least squares support vector regression (GA-LSSVR) algorithm for the real-time fault detection of the rocket engine. In order to obtain effective training samples, the data is normalized in this paper. Then, the GA-LSSVR algorithm is derived through comprehensive considerations of the advantages of the Support Vector Regression (SVR) algorithm and Least Square Support Vector Regression (LSSVR). What is more, this paper provided the genetic algorithm to search for the optimal LSSVR parameters. In the end, the computational results of the suggested approach using the rocket practical experimental data are given out. Through the analysis of the results, the effectiveness and the detection accuracy of this presented real-time fault detection method using LSSVR GA-optimized is verified. The experiment results show that this method can effectively diagnose this hydrogen-oxygen rocket engine in real-time, and the method has engineering application value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.