Spin-polarization effects of an ultrarelativistic electron beam head-on colliding with an ultraintense two-color laser pulse are investigated comprehensively in the quantum radiation-dominated regime. We employ a Monte Carlo method, derived from the recent work of [Phys. Rev. Lett. 122, 154801 (2019)], to calculate the spinresolved electron dynamics and photon emissions in the local constant field approximation. We find that electron radiation probabilities in adjacent half cycles of a two-color laser field are substantially asymmetric due to the asymmetric field strengths, and consequently, after interaction the electron beam can obtain a total polarization of about 11% and a partial polarization of up to about 63% because of radiative spin effects, with currently achievable laser facilities, which may be utilized in high-energy physics and nuclear physics. Moreover, the considered effects are shown to be crucially determined by the relative phase of the two-color laser field and robust with respect to other laser and electron beam parameters.
The spin effect of electrons/positrons (e
−/e
+) and polarization effect of γ photons are investigated in the interaction of two counter-propagating linearly polarized laser pulses of peak intensity 8.9 × 1023 W cm−2 with a thin foil target. The processes of nonlinear Compton scattering and nonlinear Breit–Wheeler pair production based on the spin- and polarization-resolved probabilities are implemented into the particle-in-cell (PIC) algorithm by Monte Carlo methods. It is found from PIC simulations that the average degree of linear polarization of emitted γ photons can exceed 50%. This polarization effect leads to a reduced positron yield by about 10%. At some medium positron energies, the reduction can reach 20%. Furthermore, we also observe that the local spin polarization of e
−/e
+ leads to a slight decrease of the positron yield about 2% and some anomalous phenomena about the positron spectrum and photon polarization at the high-energy range, due to spin-dependent photon emissions. Our results indicate that spin and polarization effects should be considered in calculating the pair production and laser-plasma interaction with the laser power of 10 PW to 100 PW classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.