Objective Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Method Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). Results No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. Conclusions The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.
Neurobiological and behavioral findings suggest that psychosis is associated with corticolimbic hyperactivity during the processing of emotional salience. This has not been widely studied in the early stages of psychosis, and the impact of these abnormalities on psychotic symptoms and global functioning is unknown. We sought to address this issue in 18 patients with first-episode psychosis (FEP), 18 individuals at ultra high risk of psychosis (UHR) and 22 healthy controls (HCs). Corticolimbic response and subjective ratings to emotional and neutral scenes were measured using functional magnetic resonance imaging. The clinical and functional impact of corticolimbic abnormalities was assessed with regression analyses. The FEP and UHR groups reported increased subjective emotional arousal to neutral scenes compared with HCs. Across groups, emotional vs neutral scenes elicited activation in the dorsomedial prefrontal cortex, inferior frontal gyrus/anterior insula and amygdala. Although FEP and UHR participants showed reduced activation in these regions when viewing emotional scenes compared with controls, this was driven by increased activation to neutral scenes. Corticolimbic hyperactivity to neutral scenes predicted higher levels of positive symptoms and poorer levels of functioning. These results indicate that disruption of emotional brain systems may represent an important biological substrate for the pathophysiology of early psychosis and UHR states.
Peanut witches'-broom (PnWB) phytoplasma are obligate bacteria that cause leafy flower symptoms in Catharanthus roseus. The PnWB-mediated leafy flower transitions were studied to understand the mechanisms underlying the pathogen-host interaction; however, our understanding is limited because of the lack of information on the C. roseus genome. In this study, the whole-transcriptome profiles from healthy flowers (HFs) and stage 4 (S4) PnWB-infected leafy flowers of C. roseus were investigated using next-generation sequencing (NGS). More than 60,000 contigs were generated using a de novo assembly approach, and 34.2% of the contigs (20,711 genes) were annotated as putative genes through name-calling, open reading frame determination and gene ontology analyses. Furthermore, a customized microarray based on this sequence information was designed and used to analyze samples further at various stages of PnWB infection. In the NGS profile, 87.8% of the genes showed expression levels that were consistent with those in the microarray profiles, suggesting that accurate gene expression levels can be detected using NGS. The data revealed that defense-related and flowering gene expression levels were altered in S4 PnWB-infected leafy flowers, indicating that the immunity and reproductive stages of C. roseus were compromised. The network analysis suggested that the expression levels of >1,000 candidate genes were highly associated with CrSVP1/2 and CrFT expression, which might be crucial in the leafy flower transition. In conclusion, this study provides a new perspective for understanding plant pathology and the mechanisms underlying the leafy flowering transition caused by host-pathogen interactions through analyzing bioinformatics data obtained using a powerful, rapid high-throughput technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.