Cross-linkable polyimides containing internal acetylene units have been synthesized by random copolymerization of 6FDA dianhydride, 2,3,5,6-tetramethyl-1,4-phenylenediamine (Durene) and 4,4 ′ -diaminodiphenylacetylene (p-intA) diamine as materials for gas separation. Compared with 6FDA-Durene polyimide, 6FDA-Durene/p-intA co-polyimide shows denser polymer chain packing, which is confirmed by wide-angle X-ray diffraction (WAXD). The thermally treated co-polyimides are insoluble in various solvents and show an increase in T g , indicating the formation of network structures among the polymer chains. Differential scanning calorimetry (DSC) and FT-Raman suggest that cross-linking arises from Diels-Alder cycloaddition between the internally arranged acetylene units along the polymer main chain, resulting in extended conjugated aromatic structures. The thermally cross-linked membranes show enhanced resistance to CO 2 plasticization up to around 5 × 10 6 Pa (700 psi). The rigidified membrane structure provides increased gas selectivity without severely compromising gas permeability. The gas separation performance of carbonized membranes is remarkably superior to those of neat and cross-linked copolyimides because of a large increase in rigidification in the polymer matrix. A Diels-Alder cycloaddition reaction produces a much more rigid and planar conjugated aromatic structure in the polymer chains and results in a higher degree of graphitization during carbonization, which is confirmed by XPS and WAXD. Carbon membranes derived from co-polyimides with more internal acetylene units show much better gas separation performance than those derived from polyimides without internal acetylene units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.