As the β-1, 3-glucanase produced by the marine-derived Williopsis saturnus WC91-2 could inhibit the activity of the killer toxin produced by the same yeast, the WsEXG1 gene encoding exo-β-1, 3-glucanase in W. saturnus WC91-2 was disrupted. The disruptant WC91-2-2 only produced a trace amount of β-1, 3-glucanase but had much higher activity of killer toxin than W. saturnus WC91-2. After the disruption of the WsEXG1 gene, the expression of the gene was significantly decreased from 100% in the cells of W. saturnus WC91-2 to 27% in the cells of the disruptant WC91-2-2 while the expression of the killer toxin gene in W. saturnus WC91-2 and the disruptant WC91-2-2 was almost the same. During 2-l fermentation, the disruptant WC91-2-2 could produce the highest amount of killer toxin (the size of the inhibition zone was 22 ± 0.7 mm) within 36 h when the cell growth reached the middle of the log phase.
In order to isolate β-galactosidase overproducers of the psychrotolerant yeast Guehomyces pullulans 17-1, its cells were mutated by using nitrosoguanidine (NTG). One mutant (NTG-133) with enhanced β-galactosidase production was obtained. The mutant grown in the production medium with 30.0 g/l lactose and 2.0 g/l glucose could produce more β-galactosidase than the same mutant grown in the production medium with only 30.0 g/l lactose while β-galactosidase production by its wild type was sensitive to the presence of glucose in the medium. It was found that 40.0 g/l of the whey powder was the most suitable for β-galactosidase production by the mutant. After optimization of the medium and cultivation conditions, the mutant could produce 29.2 U/ml of total β-galactosidase activity within 132 h at the flask level while the mutant could produce 48.1 U/ml of total β-galactosidase activity within 144 h in 2-l fermentor. Over 77.1% of lactose in the whey powder (5.0% w/v) was hydrolyzed in the presence of the β-galactosidase activity of 280 U/g of lactose within 9 h while over 77.0% of lactose in the whey was hydrolyzed in the presence of β-galactosidase activity of 280 U/g of lactose within 6 h. This was the first time to show that the β-galactosidase produced by the psychrotolerant yeast could be used for hydrolysis of lactose in the whey powder and whey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.