We report high-efficiency blue-violet quantum-dot-based light-emitting diodes (QD-LEDs) by using high quantum yield ZnCdS/ZnS graded core-shell QDs with proper surface ligands. Replacing the oleic acid ligands on the as-synthesized QDs with shorter 1-octanethiol ligands is found to cause a 2-fold increase in the electron mobility within the QD film. Such a ligand exchange also results in an even greater increase in hole injection into the QD layer, thus improving the overall charge balance in the LEDs and yielding a 70% increase in quantum efficiency. Using 1-octanethiol capped QDs, we have obtained a maximum luminance (L) of 7600 cd/m(2) and a maximum external quantum efficiency (ηEQE) of (10.3 ± 0.9)% (with the highest at 12.2%) for QD-LEDs devices with an electroluminescence peak at 443 nm. Similar quantum efficiencies are also obtained for other blue/violet QD-LEDs with peak emission at 455 and 433 nm. To the best of our knowledge, this is the first report of blue QD-LEDs with ηEQE > 10%. Combined with the low turn-on voltage of ∼2.6 V, these blue-violet ZnCdS/ZnS QD-LEDs show great promise for use in next-generation full-color displays.
In the study of hybrid quantum dot light-emitting diodes (QLEDs), even for state-of-the-art achievement, there still exists a long-standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn 1−x Cd x Se/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn 1−x Cd x Se-based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m −2 , very low efficiency roll-off at high current density (EQE ≈25% @ current density of 150 mA cm −2 ), and operational lifetime extended to ≈1 800 000 h at 100 cd m −2 . These extraordinary performances make this work the best among all solution-processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2-ethylhexane-1-thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.
Indium phosphide (InP) core/shell quantum dots (QDs) without intrinsic toxicity have shown great potential to replace the widely applied cadmium‐containing QDs in next‐generation commercial display and lighting applications. However, it remains challenging to synthesize InP core/shell QDs with high quantum yields (QYs), uniform particle size, and simultaneously thicker shell thickness to reduce nonradiative Förster resonant energy transfer (FRET). Here, thick InP‐Based QLEDs shell InP/GaP/ZnS//ZnS core/shell QDs with high stability, high QY (≈70%), and large particle size (7.2 ± 1.3 nm) are successfully synthesized through extending the growth time of shell materials along with the timely replenishment of shelling precursor. The existence of GaP interface layer minimizes the lattice mismatch and reduces interfacial defects. While thick ZnS shell, which suppresses the FRET between closely packed QDs, ensures high PL QY and stability. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on InP core/shell QDs with the peak external quantum efficiency and current efficiency of 6.3% and 13.7 cd A−1, respectively, which are the most‐efficient InP‐based green quantum dot light‐emitting diodes (QLEDs) till now. This work provides an effective strategy to further improve heavy‐metal‐free QLED performance and moves a significant step toward the commercial application of InP‐based electroluminescent device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.