Alginate fiber with a breaking tenacity of up to 2.32 cN/dtex is prepared by spinning a sodium alginate solution in a coagulating solution of CaCl2 aqueous solution followed by multi-roller drawing. Preparation parameters such as sodium alginate concentration, coagulant concentration and coagulation temperature, which affect the fiber tenacity, are investigated with an orthogonal test design, and the best spinning process is found with a coagulating 5% sodium alginate solution in 4% CaCl2 at 40°C. The morphology, degree of crystallinity, thermal stability and the combustion performance of this alginate fiber are investigated by scanning electron microscopy (SEM), infrared (IR), X-ray diffraction (XRD), Thermo gravimetric Analysis (TGA) and Cone Calorimeter. Using the centrifugal dewatering method, the absorption capacity of this alginate fiber is determined, and has a capacity of 13.01 grams of man-made blood per gram. The test results show that fibers have an irregular cross-section without a thicker cortex and uniform longitudinal surface with grooves. The combustion property results demonstrate that the fiber has a self-flameretarding property.
The compound 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) is an eco-friendly water treatment agent possessing flame-retardant phosphorus element and multi-carboxylic acid groups in its molecular structure. In the present work, PBTCA is employed as a finishing agent to improve the flame retardancy of the wool fabrics by the pad-dry-cure technique. The treated wool (10.2% weight gain) by 100 g/L of PBTCA showed an increased flame retardancy with a limiting oxygen index value (LOI) of 44% with a minimum char length of 40 mm. Importantly, the treated wool can self-extinguish after 30 washing cycles. The PBTCA-treated wool exhibited better stability with obviously increased char residue of 39.7% and 28.7% at 600 °C, while only 25.9% and 13.2% were measured for the control wool in nitrogen and air atmosphere, respectively. In addition, the high thermal stability of the treated wool with astonishing char-forming ability is confirmed by the SEM images of the wool after the isothermal heating treatment at different temperatures. Finally, a two-stage flame-retarding mechanism of enhanced crosslinking and char formability of PBTCA-treated wool is proposed and analyzed by infrared spectroscopy (TG-FTIR) and thermal (DSC and TGA) results of the pyrolytic volatiles of the treated wool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.