Mammal embryos can be impaired by mother’s excessive ethanol uptake, which induces a higher level of reactive oxygen species (ROS) and interferes in one carbon unit metabolism. Here, our analysis by in vitro culture system reveals immediate effect of ethanol in medium on mouse embryo development presents concentration dependent. A preimplantation embryo culture using medium contained 1% ethanol could impact greatly early embryos development, and harmful effect of ethanol on preimplantation embryos would last during the whole development period including of reducing ratio of blastocyst formation and implantation, and deteriorating postimplantation development. Supplement of 50 μg/ml betaine into culture medium can effectively reduce the level of ROS caused by ethanol in embryo cells and rescue embryo development at each stage damaged by ethanol, but supplement of glycine can’t rescue embryo development as does betaine. Results of 5-methylcytosine immunodetection indicate that supplement of betaine into medium can reduce the rising global level of genome DNA methylation in blastocyst cells caused by 1% ethanol, but glycine can’t play the same impact. The current findings demonstrate that betaine can effectively rescue development of embryos harmed by ethanol, and possibly by restoring global level of genome DNA methylation in blastocysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.