This article concerns with the superconvergence analysis of bilinear finite element method (FEM) for nonlinear Poisson–Nernst–Planck (PNP) equations. By employing high accuracy integral identities together with mean value technique, the superclose estimates in H1‐norm are derived for the semi‐discrete and the backward Euler fully‐discrete schemes, which improve the suboptimal error estimate in L2‐norm in the previous literature. Furthermore, the global superconvergence results in H1‐norm are obtained through interpolation postprocessing approach. Finally, a numerical example is provided to confirm the theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.