The special dispersion and temperature characteristics of diffractive optical element (DOE) make them widely used in optical systems that require both athermalization and achromatic aberrations designs. The multi-layer DOE (MLDOE) can improve the diffraction efficiency of the overall broad waveband, but its diffraction efficiency decreases with changes in ambient temperature. When the ambient temperature changes, the micro-structure heights of MLDOE and the refractive index of the substrate materials change, ultimately affecting its diffraction efficiency, and, further, the optical transform function (OTF). In this paper, the influence of ambient temperature on the diffraction efficiency of MLDOE in a dual-infrared waveband is proposed and discussed, the diffraction efficiency of MLDOE caused by ambient temperature is derived, and a computational imaging method that combines optical design and image restoration is proposed. Finally, a dual-infrared waveband infrared optical system with athermalization and achromatic aberrations corrected based on computational imaging method is designed. Results show that this method can effectively reduce the diffraction efficiency of MLDOE by ambient temperature and improve the imaging quality of hybrid optical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.