Exosomes serve as a crucial mode of communication between tumor-associated macrophages (TAMs) and cancer cells. This study attempted to explore the function of M1-derived exosomes and clarify their specific mechanism in head and neck squamous cell carcinoma (HNSCC). Moreover, the functional roles of M1-derived exosomes and their key molecule long noncoding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) in HNSCC were investigated by conducting a series of in vitro and in vivo experiments. The dual-luciferase test was utilized to clarify the binding capacities between HOTTIP/mRNA and miRNAs. Accordingly, HOTTIP was found to be upregulated in M1-derived exosomes. Meanwhile, the in vitro experiments indicated that M1 exosomes suppressed proliferation, migration and invasion but induced apoptosis of cancer cells. This function was noted to be enhanced by HOTTIP-overexpressed M1 exosomes but was weakened by HOTTIP-knockdown ones, indicating that HOTTIP serves as a key molecule in M1 exosomes. Therefore, the function of HOTTIP in cancer cells was explored, for which overexpression of HOTTIP was found to inhibit proliferation, migration and invasion but induced apoptosis of cancer cells in vitro. A mechanism study further showed that M1 exosomes and HOTTIP activated the TLR5/NF-κB signaling pathway by competitively sponging miR-19a-3p and miR-19b-3p. Furthermore, cancer cells expressing HOTTIP were noted to induce the polarization of both local M1 and M2 macrophages; however, M1 exosomes were observed to reprogram local TAMs into M1 macrophages. More importantly, both cancer cells expressing HOTTIP and M1 exosomes reeducated circulating monocytes to express the M1 phenotype. The corresponding data demonstrated that the M1 exosomal lncRNA HOTTIP suppresses HNSCC progression by upregulating the TLR5/NF-κB signaling pathway through competitively sponging miR-19a-3p and miR-19b-3p. In particular, M1 exosomes and HOTTIP induce the polarization of M1 in circulating monocytes, thus providing novel insight into HNSCC immunotherapy.
PurposeTo explore the possibility that inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) and Dendritic cell-associated C-type lectin-1(Dectin-1) could modulate the innate immune response and alleviate the severity of corneal fungal keratitis.MethodTREM-1 and Dectin-1 expression was detected in fungus-infected human corneal specimens by real-time PCR. C57BL/6 (B6) mice were injected with Aspergillus fumigatus and divided into 4 groups that received subconjunctival injections of PBS and IgG as a control (group I), mTREM-1/IgG fusion protein (group II), the soluble β-glucan antagonist laminarin (group III), or mTREM-1/Fc and laminarin (group IV). Corneal virulence was evaluated based on clinical scores. TREM-1 and Dectin-1 mRNA levels were assayed using real-time PCR. The distribution patterns of TREM-1, Dectin-1 and cellular infiltrates in fungus-infected corneas were examined by immunohistochemistry. Moreover, changes in T Helper Type1 (Th1)-/ T Helper Type1 (Th2)- type cytokines and proinflammatory cytokines were measured.ResultsThe expression of TREM-1 and Dectin-1 increased significantly and correlated positively with the progression of fungal keratitis. Most infiltrated cells were neutrophils and secondarily macrophages in infected cornea. The clinical scores decreased after interfering with TREM-1 and Dectin-1 expression in infected mouse corneas. Levels of Th1-type cytokines including interleukin-12 (IL-12), IL-18 and interferon-γ (IFN-γ) were decreased in the cornea, while the levels of Th2-type cytokines, including IL-4, IL-5 and IL-10, showed obvious increases.ConclusionTREM-1 and Dectin-1 function concurrently in the corneal innate immune response by regulating inflammatory cytokine expression in fungal keratitis. Inhibition of TREM-1 and Dectin-1 can alleviate the severity of corneal damage by downregulating the excessive inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.