We designed a series of porous graphene as the separation membrane of H 2 /N 2 . The selectivity and permeability could be controlled by drilling various nanopores with different shapes and sizes. The mechanisms of hydrogen and nitrogen to permeate through the porous graphene are different. The small nanopore (pore-11) can only allow the hydrogen molecules to permeate due to the size restriction. In the systems of bigger nanopores (e.g., pore-13, pore-14, etc.), where the pore size is big enough to allow nitrogen molecules to permeate without any restriction, we observed more permeation events of nitrogen than that of hydrogen molecules. The reason is that the van der Waals interactions with the graphene membrane make the nitrogen molecules accumulate on the surface of graphene. When the pore size further increases, the flow of hydrogen molecules exhibits the linear dependence on the pore area, while there is no obvious correlation between the flow of nitrogen molecules and the pore area.
To establish ways to control the performance of artificial water channels is a big challenge. With molecular dynamics studies, we found that water flow inside the water channels of carbon nanotubes (CNTs) can be controlled by reducing or intensifying interaction energy between water molecules and the wall of the CNTs channel. A way of example toward this significant goal was demonstrated by the doping of nitrogen into the wall of CNTs. Different ratios of nitrogen doping result in different controllable water performance which is dominated mainly through a gradient of van der Waals forces created by the heteroatom doping in the wall of CNTs. Further results revealed that the nitrogen-doped CNT channels show less influence on the integrality of biomembrane than the pristine one, while the nitrogen-doped double-walled carbon nanotube exhibits fewer disturbances to the cellular membrane integrality than the nitrogen-doped single-walled carbon nanotube when interacting with biomembranes.
Water permeation across various nitrogen-doped double-walled carbon nanotubes (N-DWCNT) has been studied with molecular dynamics simulations to better understand the influence of water-nanopore interaction on the water permeation rate. There exists a threshold interaction energy at around -34.1 kJ/mol. Over the threshold energy, the water flow through N-DWCNT decreases monotonically with the strengthening of the water-nanotube interaction. The effect on the water flow across the channel is found to be negligible when the interaction energy is weaker than the threshold. The water-nanotube interaction energy can be controlled by doping nitrogen atoms into the nanotube walls. Although the van der Waals interaction energy is much stronger than the electrostatic interaction energy, it is less sensitive to the proportion of doped nitrogen atoms. On the other hand, the electrostatic interaction energy weakens after the initial strengthening when the percentage of doped nitrogen atoms increases to ~25%. The doped nitrogen atoms make less influence on the overall electrostatic interaction energy when the proportion is over 25%, due to the repulsions among themselves. Thus, the monotonous strengthening of the van der Waals interaction energy seems to dominate the overall trend of the total interaction energy, whereas the change of the long-range electrostatic interaction energy characterizes the shape of the correlation curve, as the percentage of doped nitrogen atoms increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.