BackgroundThe rhesus macaque (RM, Macaca mulatta) is the most important nonhuman primate model in biomedical research. We present the first genomic survey of wild RMs, sequencing 81 geo-referenced individuals of five subspecies from 17 locations in China, a large fraction of the species’ natural distribution.ResultsPopulations were structured into five genetic lineages on the mainland and Hainan Island, recapitulating current subspecies designations. These subspecies are estimated to have diverged 125.8 to 51.3 thousand years ago, but feature recent gene flow. Consistent with the expectation of a larger body size in colder climates and smaller body size in warmer climates (Bergman's rule), the northernmost RM lineage (M. m. tcheliensis), possessing the largest body size of all Chinese RMs, and the southernmost lineage (M. m. brevicaudus), with the smallest body size of all Chinese RMs, feature positively selected genes responsible for skeletal development. Further, two candidate selected genes (Fbp1, Fbp2) found in M. m. tcheliensis are involved in gluconeogenesis, potentially maintaining stable blood glucose levels during starvation when food resources are scarce in winter. The tropical subspecies M. m. brevicaudus showed positively selected genes related to cardiovascular function and response to temperature stimuli, potentially involved in tropical adaptation. We found 118 single-nucleotide polymorphisms matching human disease-causing variants with 82 being subspecies specific.ConclusionsThese data provide a resource for selection of RMs in biomedical experiments. The demographic history of Chinese RMs and their history of local adaption offer new insights into their evolution and provide valuable baseline information for biomedical investigation.
Thirty Newcastle disease virus (NDV) strains isolated from outbreaks in China during 1996 to 2005 were characterized pathotypically and genotypically. All strains except one were velogenic. An analysis of the variable region (nucleotides 47 to 420) of the F gene indicated that 6 isolates belonged to genotype II, 3 to genotype III, 1 (isolated from a pigeon) to genotype VI, and 20 to genotype VII. Isolates belonging to genotype VII were further divided into five subtypes, VIIa, VIIb, VIIc, VIId, and VIIe, and subtype VIId was made up of VIId1 to VIId5. These results showed that genotype VII isolates might have been the most prevalent in China during the past two decades. Genotype VII isolates shared high homology, but the homology was less than that between genotype VII viruses and the vaccine virus LaSota. Among these NDV isolates, 25 isolates had the velogenic motif 112 R/K-R-Q-K/R-R-F 117 that is consistent with results of the biological tests. However, four of five LaSota-type isolates that contained the lentogenic motif 112 G-R-Q-G-R-L 117 were velogenic, except SY/03, in the view of the biological test. The majority of genotype VII isolates had lost one or two N-glycosylation sites. Finally, a cross-protection experiment in which specific-pathogen-free chickens vaccinated with LaSota were challenged by six NDV isolates showed that more than three isolates were antigenic variants that could be responsible for recent outbreaks of Newcastle disease.
Macaques are the most widely distributed nonhuman primates and used as animal models in biomedical research. The availability of full-genome sequences from them would be essential to both biomedical and primate evolutionary studies. Previous studies have reported whole-genome sequences from rhesus macaque (Macaca mulatta) and cynomolgus macaque (M. fascicularis, CE), both of which belong to the fascicularis group. Here, we present a 37-fold coverage genome sequence of the Tibetan macaque (M. thibetana; TM). TM is an endemic species to China belonging to the sinica group. On the basis of mapping to the rhesus macaque genome, we identified approximately 11.9 million single-nucleotide variants), of which 3.9 million were TM specific, as assessed by comparison two Chinese rhesus macaques (CR) and two CE genomes. Some genes carried TM-specific homozygous nonsynonymous variants (TSHNVs), which were scored as deleterious in human by both PolyPhen-2 and SIFT (Sorting Tolerant From Intolerant) and were enriched in the eye disease genes. In total, 273 immune response and disease-related genes carried at least one TSHNV. The heterozygosity rates of two CRs (0.002617 and 0.002612) and two CEs (0.003004 and 0.003179) were approximately three times higher than that of TM (0.000898). Polymerase chain reaction resequencing of 18 TM individuals showed that 29 TSHNVs exhibited high allele frequencies, thus confirming their low heterozygosity. Genome-wide genetic divergence analysis demonstrated that TM was more closely related to CR than to CE. We further detected unusual low divergence regions between TM and CR. In addition, after applying statistical criteria to detect putative introgression regions (PIRs) in the TM genome, up to 239,620 kb PIRs (8.84% of the genome) were identified. Given that TM and CR have overlapping geographical distributions, had the same refuge during the Middle Pleistocene, and show similar mating behaviors, it is highly likely that there was an ancient introgression event between them. Moreover, demographic inferences revealed that TM exhibited a similar demographic history as other macaques until 0.5 Ma, but then it maintained a lower effective population size until present time. Our study has provided new insight into the macaque evolutionary history, confirming hybridization events between macaque species groups based on genome-wide data.
The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.
Background: The epidemiological feature of human papillomavirus (HPV) infection is distinctive in China. We aimed to investigate the multi-infection patterns and co-infection preference of 27 HPV types among gynecological outpatients across China. Methods: Overall 137,943 gynecological outpatients were recruited from eight tertiary hospitals located in seven regions of China, between July 1st, 2014 and December 31st, 2016. The overall, region-specific, age-specific and type-specific prevalence of HPV infection were calculated, respectively. The pattern of HPV infection was also evaluated. Furthermore, rate ratio was calculated to evaluate the co-infection preference of any two HPV genotypes. Results: The overall prevalence of 27 HPVs' [17 high-risk (hr)/10 low-risk (lr)] infection was 23.5%. The age-specific HPV prevalence showed a "U-shaped" pattern. The most prevalent hrHPV genotypes were 16, 52, and 58. Multiple infections were detected in 25.8% of the HPV-positive women, in which dual infection was more prevalent. HPV 16/18 were likely to co-infected with HPV 31 but unlikely with HPV 52/58, i.e., the coinfection of HPV 16 with HPV 31 was high (3.5-fold), but low for HPV 58 (1.8-fold), and 52 (1.2-fold), while the co-infection of HPV 18 with HPV 31 was high (4.3-fold), but low for HPV 52 (1.9-fold), and 58 (1.7-fold). Conclusions: We found age-specific prevalence of HPV infection showed a "U-shaped" pattern for high and low risk HPV, suggesting the importance of screening among younger women and the necessary of detection among older women. We found a novel co-infection preference of HPV 16/18 with 31, 52, and 58, suggesting a need of developing and marketing prophylactic HPV vaccines that protect against more genotypes in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.