Hydrazine is an important industrial chemical but also very toxic thus requiring rapid detection agents. A ratiometric fluorescence probe that enables rapid, low-limit and naked-eye detection is successfully designed and used for hydrazine determination in live cells.
Zinc dyshomeostasis is a major mechanism of neuronal death, which is involved in many different neuropathological conditions. Lysosomal membrane permeabilisation has an important function in zincinduced neuronal death under oxidative stress. To investigate lysosomal zinc functions in neurons with high spatial and temporal reliability, we report a ratiometric probe, LysoZn-1. It is derived from the styryl-BODIPY-DPA scaffold with a lysosome-targeted 2-morpholinoethylamine moiety to allow localisation in lysosomes. The electron donor at the meso-position of the BODIPY fluorophore makes the present probe prefer complexing with Zn 2+ rather than Cd 2+ , which can be explained by HSAB (Hard-Soft Acid-Base) theory and was confirmed by Gaussian calculation. Upon Zn 2+ binding, LysoZn-1 exhibits obvious fluorescence enhancement (F 578 nm ) and ratio (F 578 nm /F 680 nm ) changes. The emission intensities of LysoZn-1 and LysoZn-1 + Zn 2+ do not change significantly under lysosomal pH ranging from 4.5 to 6.0. Confocal imaging experiments indicate that LysoZn-1 is able to localise to lysosomes in neural stem cells (NSCs), MCF-7 and Hela cells and detect exogenous Zn 2+ levels in NSCs and MCF-7 cells. LysoZn-1 function is not disturbed by chloroquine in living cells. Furthermore, increases in lysosomal Zn 2+ concentration upon H 2 O 2 stimulation in NSCs are observed using LysoZn-1. † Electronic supplementary information (ESI) available: Characterisation data for compound 2, 3 and LysoZn-1, computational results, additional spectroscopic data, MTT results and LysoZn-1 sensing Zn 2+ in MCF-7 cells. See
The fermentation process of Yunnan arabica coffee is a typical wet fermentation. Its excellent quality is closely related to microbes in the process of fermentation. The purpose of this study was to isolate and identify the microorganisms in the wet method of coffee processing in Yunnan Province, China. Microbial community structure and dominant bacterial species were evaluated by traditional cultivated separation method and PCR-DGGE technology, and were further analyzed in combination with the changes of organic acid content, activity of pectinase, and physical parameters (pH and temperature). A large number of microorganisms which can produce pectinase were found. Among them, Enterobacter cowanii, Pantoea agglomerans, Enterobacteriaceae bacterium, and Rahnella aquatilis were the predominant gram-negative bacteria, Bacillus cereus was the predominant gram-positive bacterium, Pichia kluyveri, Hanseniaspora uvarum, and Pichia fermentans were the predominant yeasts, and all those are pectinase-producing microorganisms. As for the contents of organic acids, oxalic was the highest, followed by acetic and lactic acids. Butyrate and propionate, which were unfavorable during the fermentation period, were barely discovered.
Two novel fluorene-derived two-photon fluorescent probes (TPFL) targeting the endoplasmic reticulum (TPFL-ER) and lysosomes (TPFL-Lyso) were synthesized by introducing a chlorine group and a morpholine group, respectively. They were shown to be suitable for specific and simultaneous imaging of the endoplasmic reticulum and lysosomes without affecting protein movements owing to their similar molecular structures. TPFL-ER and TPFL-Lyso were successfully used to visualize the changes of the endoplasmic reticulum and lysosomes during cancer cell apoptosis and they demonstrated high specificity and sensitivity, excellent photostability, and low phototoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.