Parallel file systems have become a common component of modern high-end computers to mask the ever-increasing gap between disk data access speed and CPU computing power. However, while working well for certain applications, current parallel file systems lack the ability to effectively handle concurrent I/O requests with data synchronization needs, whereas concurrent I/O is the norm in data-intensive applications. Recognizing that an I/O request will not complete until all involved file servers in the parallel file system have completed their parts, in this paper we propose a serverside I/O coordination scheme for parallel file systems. The basic idea is to coordinate file servers to serve one application at a time in order to reduce the completion time, and in the meantime maintain the server utilization and fairness. A window-wide coordination concept is introduced to serve our purpose. We present the proposed I/O coordination algorithm and its corresponding analysis of average completion time in this study. We also implement a prototype of the proposed scheme under the PVFS2 file system and MPI-IO environment. Experimental results demonstrate that the proposed scheme can reduce average completion time by 8% to 46%, and provide higher I/O bandwidth than that of default data access strategies adopted by PVFS2 for heavy I/O workloads. Experimental results also show that the server-side I/O coordination scheme has good scalability.
I/O data access is a recognized performance bottleneck of high-end computing. Several commercial and research parallel file systems have been developed in recent years to ease the performance bottleneck. These advanced file systems perform well on some applications but may not perform well on others. They have not reached their full potential in mitigating the I/O-wall problem. Data access is application dependent. Based on the application-specific optimization principle, in this study we propose a cost-intelligent data access strategy to improve the performance of parallel file systems. We first present a novel model to estimate data access cost of different data layout policies. Next, we extend the cost model to calculate the overall I/O cost of any given application and choose an appropriate layout policy for the application. A complex application may consist of different data access patterns. Averaging the data access patterns may not be the best solution for those complex applications that do not have a dominant pattern. We then further propose a hybrid data replication strategy for those applications, so that a file can have replications with different layout policies for the best performance. Theoretical analysis and experimental testing have been conducted to verify the newly proposed cost-intelligent layout approach. Analytical and experimental results show that the proposed cost model is effective and the application-specific data layout approach achieved up to 74% performance improvement for data-intensive applications.
Abstract-Parallel file systems are designed to mask the everincreasing gap between CPU and disk speeds via parallel I/O processing. While they have become an indispensable component of modern high-end computing systems, their inadequate performance is a critical issue facing the HPC community today. Conventionally, a parallel file system stripes a file across multiple file servers with a fixed stripe size. The stripe size is a vital performance parameter, but the optimal value for it is often application dependent. How to determine the optimal stripe size is a difficult research problem. Based on the observation that many applications have different data-access clusters in one file, with each cluster having a distinguished data access pattern, we propose in this paper a segmented data layout scheme for parallel file systems. The basic idea behind the segmented approach is to divide a file logically into segments such that an optimal stripe size can be identified for each segment. A five-step method is introduced to conduct the segmentation, to identify the appropriate stripe size for each segment, and to carry out the segmented data layout scheme automatically. Experimental results show that the proposed layout scheme is feasible and effective, and it improves performance up to 163% for writing and 132% for reading on the widely used IOR and IOzone benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.