Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating this technology to clinical practice has been the lack of efficient glycosidase enzymes. Here we report two bacterial glycosidase gene families that provide enzymes capable of efficient removal of A and B antigens at neutral pH with low consumption of recombinant enzymes. The crystal structure of a member of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions.
Nephrin is an Ig-like transmembrane protein. It is a major component of the podocyte slit diaphragm and is essential for maintaining normal glomerular permeability. CD2-associated protein (CD2AP) is also necessary for normal glomerular permeability and is a putative nephrin adapter molecule. Here, we document that nephrin and CD2AP are linked to the actin cytoskeleton. As detected by Western blot analysis, nephrin and CD2AP were both insoluble when cell membranes from normal rat glomeruli were extracted with 0.5% Triton X-100 (TX-100) at 4 degrees C in the presence of divalent cations, but they were solubilized when the extraction included potassium iodide (KI) to depolymerize F-actin. In addition, a small fraction of the solubilized nephrin and CD2AP was recovered in the low-density fractions of OptiPrep flotation gradients, which indicates that a portion of nephrin, possibly associated with CD2AP, resides in a cholesterol- or sphingolipid-rich region of the plasma membrane. Immunofluorescent staining of unfixed sections of normal rat kidney for nephrin, CD2AP, and F-actin was unaltered by treatment with TX-100 but was greatly diminished by addition of KI. Nephrin staining was slightly reduced by cholesterol depletion with methyl-beta-cyclodextrin in the presence of TX-100 but was nearly absent after addition of KI. These results document that nephrin anchors the slit diaphragm to the actin cytoskeleton, possibly by linkage to CD2AP, and that nephrin traverses a relatively cholesterol-poor region of the podocyte plasma membrane. In addition, a small pool of actin-associated nephrin and CD2AP resides in lipid rafts, possibly in the cholesterol-rich apical region of the podocyte-foot processes.
Nephrin is dissociated from podocin and excreted into urine in the early stages of Heymann nephritis. The reduced expression of nephrin and podocin, along with their dissociation, may contribute to the development of proteinuria in Heymann nephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.