Finite control set model predictive control (FCSMPC) is a highly attractive and potential control method for grid-tied converters. However, there are several challenges when employing FCSMPC in an LCL filter-based T-type three-level power conversion system (PCS) for battery energy storage applications. These challenges mainly include the increasing complexity of control algorithm and excessive cost of additional sensors, which deteriorate the performance of PCS and limit the application of FCSMPC. In order to overcome these issues, this paper proposes a simplified FCSMPC algorithm to reduce the computation complexity. Furthermore, full-dimensional state observers are adopted and implemented to estimate the instantaneous values of grid-side current and capacitor voltage for purpose of removing unnecessary electrical sensors. The implementation of proposed FCSMPC algorithm is described step by step in detail. Simulation results are provided as a verification for the correctness of theoretical analysis. Finally, a three-phase T-type three-level PCS prototype rated at 2.30 kVA/110 V is built up. Experimental results extracted from the prototype can verify the effectiveness of the proposed control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.