In this article, we study a new class of semiparametric instrumental variables models, in which the structural function has a partially varying coefficient functional form. Under this specification, the model is linear in the endogenous/exogenous components with unknown constant or functional coefficients. As a result, the ill-posed inverse problem in a general non-parametric model with continuous endogenous variables can be avoided. We propose a three-step estimation procedure for estimating both constant and functional coefficients and establish their asymptotic properties such as consistency and asymptotic normality. We develop consistent estimators for their error variances. We demonstrate that the constant coefficient estimators achieve the optimal -convergence rate, and the functional coefficient estimators are oracle. In addition, efficiency issue of the parameter estimation is discussed and a simple efficient estimator is proposed. The proposed procedure is illustrated via a Monte Carlo simulation and an application to returns to education.National Science Foundation of China [70871003, 70971113]; University of North Carolina at Charlotte; Chinese Government; Fujian Province; Xiamen City; Chinese Ministry of Education; Fujian Province, Chin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.