In this paper, we establish some Liouville type theorems for positive solutions of Hénon equation and system in R n . First, under some regularity conditions, we show that the above equation and system are equivalent to the some integral equation and system, respectively. Then, we prove Liouville type theorems via the method of moving planes in integral forms.
<p style='text-indent:20px;'>In this paper, we classify the positive solutions to the following integral system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \begin{cases} u_s(x_s) = \int_{\mathbb{R}^{N(k-1)}}\frac{\prod\limits_{j\neq s}u^{p_j}_j(x_j)}{\prod_{1\leq i<j\leq k}|x_i-x_j|^{N-h_{ij}}}dX_{\widehat{s}}, \\ u_s\geq0, \; \rm{in}\quad\mathbb{R}^N, \quad s = 1, 2, \cdots, k, \end{cases} \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ N\ge1, p_j>1, 0<h_{ij}<N $\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id="M2">\begin{document}$ i, j\in\{1, 2, \cdots, k\} $\end{document}</tex-math></inline-formula>. Up to a positive constant multiplier, this system is the Euler-Lagrangian equations associated to the multilinear fractional integral inequality established by Beckner. Employing the method of moving spheres, we give the explicit form of positive solutions to the above system with <inline-formula><tex-math id="M3">\begin{document}$ p_j = \frac{\sum_{1\leq i<j\leq k} \ \ h_{ij}-(k-3)N}{(k-1)N-\sum_{1\leq i<j\leq k} \ \ h_{ij}} $\end{document}</tex-math></inline-formula> satisfying</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \sum\limits^k_{j = 1}\frac{1}{p_j+1} = \sum\limits_{1\leq i<j\leq k}\frac{N-h_{ij}}{N}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>and show the nonexistence of positive solutions for <inline-formula><tex-math id="M4">\begin{document}$ p_j>1 $\end{document}</tex-math></inline-formula> with</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ \sum\limits^k_{j = 1}\frac{1}{p_j+1}>\sum\limits_{1\leq i<j\leq k}\frac{N-h_{ij}}{N}. $\end{document} </tex-math></disp-formula></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.