Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.
Turmeric, a product of Curcuma longa, has a very long history of being used for the treatment of wounds in many Asian countries. Curcumin, the principal curcuminoid of turmeric, has recently been identified as a main mediator of turmeric's medicinal properties. However, the inherent limitations of the compound itself, such as hydrophobicity, instability, poor absorption and rapid systemic elimination, pose big hurdles for translation to wider clinical application. We present here an approach for engineering curcumin/gelatin-blended nanofibrous mats (NMs) by electrospinning to adequately enhance the bioavailability of the hydrophobic curcumin for wound repair. Curcumin was successfully formulated as an amorphous nanosolid dispersion and favorably released from gelatin-based biomimetic NMs that could be easily applied topically to experimental wounds. We show synergistic signaling by the released curcumin during the healing process: (i) mobilization of wound site fibroblasts by activating the Wnt signaling pathway, partly mediated through Dickkopf-related protein-1, and (ii) persistent inhibition of the inflammatory response through decreased expression of monocyte chemoattractant protein-1 by fibroblasts. With a combination of these effects, the curcumin/gelatin-blended NMs enhanced the regenerative process in a rat model of acute wounds, providing a method for translating this ancient medicine for use in modern wound therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.