Underground coal mining-induced ground subsidence (or major ground vertical settlement) is a major concern to the mining industry, government and people affected. Based on the probability integral method, this paper presents a new ground subsidence prediction method for predicting irregularly shaped coal mining area extraction-induced ground subsidence. Firstly, the Delaunay triangulation method is used to divide the irregularly shaped mining area into a series of triangular extraction elements. Then, the extraction elements within the calculation area are selected. Finally, the Monte Carlo method is used to calculate extraction element-induced ground subsidence. The proposed method was tested by two experimental data sets: the simulation data set and direct leveling-based subsidence observations. The simulation results show that the prediction error of the proposed method is proportional to mesh size and inversely proportional to the amount of generated random points within the auxiliary domain. In addition, when the mesh size is smaller than 0.5 times the minimum deviation of the inflection point of the mining area, and the amount of random points within an auxiliary domain is greater than 800 times the area of the extraction element, the difference between the proposed method-based subsidence predictions and the traditional probability integral method-based subsidence predictions is marginal. The measurement results show that the root-mean-square error of the proposed method-based subsidence predictions is smaller than 3 cm, the average of absolute deviations of the proposed method-based subsidence predictions is 2.49 cm, and the maximum absolute deviation is 4.05 cm, which is equal to 0.75% of the maximum direct leveling-based subsidence observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.