The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community.
BACKGROUND Poor sleep quality is a common clinical feature in patients with type 2 diabetes mellitus (T2DM), and often negatively related with glycemic control. Cognitive behavioral therapy (CBT) may improve sleep quality and reduce blood sugar levels in patients with T2DM. However, it is not entirely clear whether CBT delivered by general practitioners is effective for poor sleep quality in T2DM patients in community settings. AIM To test the effect of CBT delivered by general practitioners in improving sleep quality and reducing glycemic levels in patients with T2DM in community. METHODS A cluster randomized controlled trial was conducted from September 2018 to October 2019 in communities of China. Overall 1033 persons with T2DM and poor sleep quality received CBT plus usual care or usual care. Glycosylated hemoglobin A1c (HbAlc) and sleep quality [Pittsburgh Sleep Quality Index (PSQI)] were assessed. Repeated measures analysis of variance and generalized linear mixed effects models were used to estimate the intervention effects on hemoglobin A1c and sleep quality. RESULTS The CBT group had 0.64, 0.50, and 0.9 lower PSQI scores than the control group at 2 mo, 6 mo, and 12 mo, respectively. The CBT group showed 0.17 and 0.43 lower HbAlc values than the control group at 6 mo and 12 mo. The intervention on mean ΔHbAlc values was significant at 12 mo ( t = 3.68, P < 0.01) and that mean ΔPSQI scores were closely related to ΔHbAlc values ( t = 7.02, P < 0.01). Intention-to-treat analysis for primary and secondary outcomes showed identical results with completed samples. No adverse events were reported. CONCLUSION CBT delivered by general practitioners, as an effective and practical method, could reduce glycemic levels and improve sleep quality for patients with T2DM in community.
This paper presents a new, practical infrared video based surveillance system, consisting of a resolution-enhanced, automatic target detection/recognition (ATD/R) system that is widely applicable in civilian and military applications. To deal with the issue of small numbers of pixel on target in the developed ATD/R system, as are encountered in long range imagery, a super-resolution method is employed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. To tackle the challenge of detecting extremely low-resolution targets, we train a sophisticated and powerful convolutional neural network (CNN) based faster-RCNN using long wave infrared imagery datasets that were prepared and marked in-house. The system was tested under different weather conditions, using two datasets featuring target types comprising pedestrians and 6 different types of ground vehicles. The developed ATD/R system can detect extremely low-resolution targets with superior performance by effectively addressing the low small number of pixels on target, encountered in long range applications. A comparison with traditional methods confirms this superiority both qualitatively and quantitatively.
In urban environments there are daily issues of traffic congestion which city authorities need to address. Realtime analysis of traffic flow information is crucial for efficiently managing urban traffic. This paper aims to conduct traffic analysis using UAV-based videos and deep learning techniques. The road traffic video is collected by using a position-fixed UAV. The most recent deep learning methods are applied to identify the moving objects in videos. The relevant mobility metrics are calculated to conduct traffic analysis and measure the consequences of traffic congestion. The proposed approach is validated with the manual analysis results and the visualization results. The traffic analysis process is real-time in terms of the pretrained model used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.