Quercetin has been demonstrated to play an important role in altering the progression of ischemic brain injuries and neurodegenerative diseases by protecting against oxidative stress. The effects of quercetin on brain damage after subarachnoid hemorrhage (SAH), however, have not been investigated. This study was designed to explore the effects of quercetin on oxidative stress and brain edema after experimental SAH using four equal groups (n = 16) of adult male Sprague-Dawley (SD) rats, including a sham group, an SAH + vehicle group, an SAH + quercetin10 group, and an SAH + quercetin50 group. The rat SAH model was induced by injection of 0.3 ml of non-heparinised arterial blood into the prechiasmatic cistern. In the SAH + quercetin10 and SAH + quercetin50 groups, doses of 10 mg/kg and 50 mg/kg quercetin, respectively, were directly administered by intraperitoneal injection at 30 min, 12 h, and 24 h after SAH induction. Cerebral tissue samples were extracted for enzymatic antioxidant determination, lipid peroxidation assay, caspase-3 activity and water content testing 48 h after SAH. Treatment with a high dose (50 mg/kg) of quercetin markedly enhanced the activities of copper/zinc superoxide dismutase (CuZn-SOD) and glutathione peroxidase (GSH-Px), and treatment with this dose significantly reduced the level of malondialdehyde (MDA). Caspase-3 and brain edema was ameliorated and neurobehavioral deficits improved in rats that received the high dose of quercetin. The findings suggest that the early administration of optimal dose of quercetin may ameliorate brain damage and provide neuroprotection in the SAH model, potentially by enhancing the activity of endogenous antioxidant enzymes and inhibiting free radical generation.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion.
Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of PD. Previous studies have revealed that Astragaloside IV (AS-IV) can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative disease. In this study, we investigated whether AS-IV protect against 1-methyl-4-phenylpyridnium ion (MPP(+))-induced dopaminergic neurotoxicity in SH-SY5Y cells and determined the mechanism of AS-IV neuroprotection. We found that pretreatment with AS-IV significantly reversed the loss of cell viability, nuclear condensation, the generation of intracellular reactive oxygen species (ROS), and the increase in Bax/Bcl-2 ratio and the activity of caspase-3 induced by MPP(+). Our study suggests that the neuroprotective effect of AS-IV is related to mechanisms including ROS production and the inhibition of Bax-mediated pathway. The present study supports the notion that AS-IV may be a promising neuroprotective agent for the treatment of neurodegenerative disorders such as PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.