Background Comorbidity between depressive and anxiety disorders is common. From network perspective, mental disorders arise from direct interactions between symptoms and comorbidity is due to direct interactions between depression and anxiety symptoms. The current study investigates the network structure of depression and anxiety symptoms in Chinese female nursing students and identifies the central and bridge symptoms as well as how other symptoms in present network are related to depression symptom “thoughts of death”. Methods To understand the full spectrum of depression and anxiety, we recruited 776 Chinese female nursing students with symptoms of depression and anxiety that span the full range of normal to abnormal. Depression symptoms were measured by Patient Health Questionnaire-9 while anxiety symptoms were measured by Generalized Anxiety Disorder 7-Item Questionnaire. Network analysis was used to construct networks. Specifically, we computed the predictability, expected influence and bridge expected influence for each symptom and showed a flow network of “thoughts of death”. Results Nine strongest edges existed in network were from the same disorder. Four were between depression symptoms, like “sleep difficulties” and “fatigue”, and “anhedonia” and “fatigue”. Five were between anxiety symptoms, like “nervousness or anxiety” and “worry too much”, and “restlessness” and “afraid something will happen”. The symptom “fatigue”, “feeling of worthlessness” and “irritable” had the highest expected influence centrality. Results also revealed two bridge symptoms: “depressed or sad mood” and “irritable”. As to “thoughts of death”, the direct relations between it and “psychomotor agitation/retardation” and “feeling of worthlessness” were the strongest direct relations. Conclusions The current study highlighted critical central symptoms “fatigue”, “feeling of worthlessness” and “irritable” and critical bridge symptoms “depressed or sad mood” and “irritable”. Particularly, “psychomotor agitation/retardation” and “feeling of worthlessness” were identified as key priorities due to their strongest associations with suicide ideation. Implications for clinical prevention and intervention based on these symptoms are discussed.
Chemotherapy (CT) resistance in ovarian cancer is related to multiple factors, and assessment of these factors is necessary for the development of new drugs and therapeutic regimens. In an effort to identify such determinants, we evaluated the expression of approximately 21,000 genes using DNA microarray screening in paired tumor samples taken prior to and after CT treatment from 6 patients with predominantly advanced stage, high-grade epithelial ovarian cancer. A subset of differentially expressed genes was selected from all microarray data by initial filtering on confidence at p=0.05, followed by filtering on expression level (≥2-fold). Using these selection criteria, we found 121 genes to be commonly up-regulated and 54 genes to be down-regulated in the post-CT tumors, compared to primary tumors. Upregulated genes in post-CT tumors included substantial number of genes with previously known implication in mechanisms of chemoresistance (
Long-term glucocorticoid (GC) treatment induces central fat accumulation and metabolic dysfunction. We demonstrate that microRNA-27b (miR-27b) plays a central role in the pathogenesis of GC-induced central fat accumulation. Overexpression of miR-27b had the same effects as dexamethasone (DEX) treatment on the inhibition of brown adipose differentiation and the energy expenditure of primary adipocytes. Conversely, antagonizing miR-27b function prevented DEX suppression of the expression of brown adipose tissue–specific genes. GCs transcriptionally regulate miR-27b expression through a GC receptor–mediated direct DNA-binding mechanism, and miR-27b suppresses browning of white adipose tissue (WAT) by targeting the three prime untranslated region of Prdm16. In vivo, antagonizing miR-27b function in DEX-treated mice resulted in the efficient induction of brown adipocytes within WAT and improved GC-induced central fat accumulation. Collectively, these results indicate that miR-27b functions as a central target of GC and as an upstream regulator of Prdm16 to control browning of WAT and, consequently, may represent a potential target in preventing obesity.
N-myc downstream-regulated gene 2 (NDRG2) is believed to be involved in cell growth events. However, its exact function is still unknown. To elucidate the role of this gene, we used an anti-Ndrg2 monoclonal antibody in immunohistochemistry and immunofluorescence assays to analyze the expression pattern of Ndrg2 protein in mouse embryos at various gestational ages and in a variety of adult mouse tissues. Ndrg2 immunoreactivity was generally localized to the cytoplasm. During mouse development, Ndrg2 expression was observed in many developing tissues and organs including the heart, brain, lung, gut, liver, kidney, skeletal muscle, cartilage, chorion, epidermis, and whisker follicles. Ndrg2 expression was developmentally dynamic, being generally lower in the early stages of development and markedly increasing during later stages. Ndrg2 expression was also observed in a variety of adult mouse tissues, particularly in the heart and brain. This is the first demonstration of Ndrg2 protein expression in both embryonic and adult mouse tissues. Our results suggest that NDRG2 plays important roles in histogenesis and organogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.