Objective Although twin and family studies have shown Attention Deficit/Hyperactivity Disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. As prior genome-wide association scans (GWAS) have not yielded significant results, we conducted a meta-analysis of existing studies to boost statistical power. Method We used data from four projects: a) the Children’s Hospital of Philadelphia (CHOP), b) phase I of the International Multicenter ADHD Genetics project (IMAGE), c) phase II of IMAGE (IMAGE II), and d) the Pfizer funded study from the University of California, Los Angeles, Washington University and the Massachusetts General Hospital (PUWMa). The final sample size consisted of 2,064 trios, 896 cases and 2,455 controls. For each study, we imputed HapMap SNPs, computed association test statistics and transformed them to Z-scores, and then combined weighted Z-scores in a meta-analysis. Results No genome-wide significant associations were found, although an analysis of candidate genes suggests they may be involved in the disorder. Conclusions Given that ADHD is a highly heritable disorder, our negative results suggest that the effects of common ADHD risk variants must, individually, be very small or that other types of variants, e.g. rare ones, account for much of the disorder’s heritability.
The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, including rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in 48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency >1%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the association between PTPN22 and RA, since significant differences between cases and controls persisted in both sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one additional variant in the PTPN22 gene region influence RA susceptibility.
INTRODUCTION Genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been crucial in advancing the understanding of AD pathophysiology. Here we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing (WES, WGS) data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times and over 300 publications have resulted, including reports of large scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies employed ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first WES and WGS data sets and reports in healthy controls, MCI, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data, and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multi-omics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.
Breast cancers can be divided into subtypes with important implications for prognosis and treatment. We set out to characterize the genetic alterations observed in different breast cancer subtypes and to identify specific candidate genes and pathways associated with subtype biology. mRNA expression levels of estrogen receptor, progesterone receptor, and HER2 were shown to predict marker status determined by immunohistochemistry and to be effective at assigning samples to subtypes. HER2 + cancers were shown to have the greatest frequency of high-level amplification (independent of the ERBB2 amplicon itself), but triple-negative cancers had the highest overall frequencies of copy gain. Triple-negative cancers also were shown to have more frequent loss of phosphatase and tensin homologue and mutation of RB1, which may contribute to genomic instability. We identified and validated seven regions of copy number alteration associated with different subtypes, and used integrative bioinformatics analysis to identify candidate oncogenes and tumor suppressors, including ERBB2, GRB7, MYST2, PPM1D, CCND1, HDAC2, FOXA1, and RASA1. We tested the candidate oncogene MYST2 and showed that it enhances the anchorage-independent growth of breast cancer cells. The genome-wide and region-specific differences between subtypes suggest the differential activation of oncogenic pathways. (Mol Cancer Res 2009;7(4):511-22)
Analysis of polymorphism and divergence in the non-coding portion of the human genome yields crucial information about factors driving the evolution of gene regulation. Candidate cis-regulatory regions spanning more than 15,000 genes in 15 African Americans and 20 European Americans were re-sequenced and aligned to the chimpanzee genome in order to identify potentially functional polymorphism and to characterize and quantify departures from neutral evolution. Distortions of the site frequency spectra suggest a general pattern of selective constraint on conserved non-coding sites in the flanking regions of genes (CNCs). Moreover, there is an excess of fixed differences that cannot be explained by a Gamma model of deleterious fitness effects, suggesting the presence of positive selection on CNCs. Extensions of the McDonald-Kreitman test identified candidate cis-regulatory regions with high probabilities of positive and negative selection near many known human genes, the biological characteristics of which exhibit genome-wide trends that differ from patterns observed in protein-coding regions. Notably, there is a higher probability of positive selection in candidate cis-regulatory regions near genes expressed in the fetal brain, suggesting that a larger portion of adaptive regulatory changes has occurred in genes expressed during brain development. Overall we find that natural selection has played an important role in the evolution of candidate cis-regulatory regions throughout hominid evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.