The most severe form of brain glioma, glioblastoma (GBM), is highly malignant and usually resistant to chemotherapy. Therefore, discovery of new targets for gene therapy is important. Using subtraction cloning, we identified the human N-Myc downstream-regulated gene 2 (hNDRG2), located at chromosome 14q11.2, as a gene that is significantly suppressed in GBM tissues. Semiquantitative RT-PCR showed that the hNDRG2 gene transcript is expressed in normal brain tissue and low-grade gliomas but is present at low levels in 15 of 27 (56%) human GBM tissues and all of the 6 human glioblastoma cell lines examined. Furthermore, transfection of human glioblastoma U373 and U138 cells with a cDNA encoding hNDRG2 markedly reduced the cell proliferation. Our findings provide the first evidence to suggest that hNDRG2 may play a role in glioblastoma carcinogenesis.
The NDRG2 gene belongs to a family of N-Myc downstream-regulated genes (NDRGs) and is expressed in many normal tissues. NDRG2 gene expression has been shown to be regulated in the stress response of certain cells. However, its function is not yet fully understood. Many studies have demonstrated that hypoxia, one of the stress responses, induced apoptosis in several cell types. In the current study, we investigated NDRG2 involvement in hypoxia response and found that NDRG2 expression was markedly up-regulated in several tumor cell lines exposed to hypoxic conditions or similar stresses at the mRNA and protein level. We also observed that the expression of NDRG2 was regulated by Hypoxia-inducible factor 1 (HIF-1) in tumor cells under hypoxia. Three hypoxia-responsive elements (HREs) in the NDRG2 promoter were identified. HRE1 could directly bind Hif-1 in vivo. Importantly, we found that silencing or enforcing the expression of NDRG2 could strongly inhibit or increase apoptosis. In addition, our data also showed that Ndrg2 was able to be translocated from the cytoplasm to the nucleus, and the segment from 101 to 178 amino acids of Ndrg2 is responsible for its translocation. Taken together, this study suggests that NDRG2 is a Hif-1 target gene and closely related with hypoxia-induced apoptosis in A549 cells.
The N-myc downstream-regulated gene 1 (ndrg1) is highly expressed in N-myc knock-out mice through an unknown regulatory mechanism. As one member of the human NDRG gene family, NDRG2 encodes a protein highly homologous to Ndrg1. However, it is uncertain whether the expression of human NDRG2 is regulated by Myc because mouse ndrg2 and -3 are not affected by Myc. In this study, we provide the novel evidence that the expression of human NDRG2 is down-regulated by Myc via transcriptional repression. A high level of NDRG2 was observed as Myc expression was reduced in differentiated cells, whereas a low level of NDRG2 was shown following increased Myc expression upon serum stimulation. The ectopic expression of c-Myc dramatically reduces the cellular Ndrg2 protein and mRNA level. We further identified the core promoter region of NDRG2 that is required for Myc repression on NDRG2 transcription, and we verified the interaction of Myc with the core promoter region both in vitro and in vivo. Moreover, the c-Myc-mediated repression of NDRG2 requires association with Miz-1, and possibly the recruitment of other epigenetic factors, such as histone deacetylases, to the promoter. The regulatory function of Myc on NDRG2 gene expression implicated the role of the Ndrg2 in regulating cell differentiation.
NDRG2 gene might express differently between normal tissues and cancer tissues, and might play an important role in the development of pancreatic cancer and liver cancer. Low expression of NDRG2 might be unrelated to the mutation of coding region of NDRG2.
N-myc downstream-regulated gene 2 (NDRG2) is believed to be involved in cell growth events. However, its exact function is still unknown. To elucidate the role of this gene, we used an anti-Ndrg2 monoclonal antibody in immunohistochemistry and immunofluorescence assays to analyze the expression pattern of Ndrg2 protein in mouse embryos at various gestational ages and in a variety of adult mouse tissues. Ndrg2 immunoreactivity was generally localized to the cytoplasm. During mouse development, Ndrg2 expression was observed in many developing tissues and organs including the heart, brain, lung, gut, liver, kidney, skeletal muscle, cartilage, chorion, epidermis, and whisker follicles. Ndrg2 expression was developmentally dynamic, being generally lower in the early stages of development and markedly increasing during later stages. Ndrg2 expression was also observed in a variety of adult mouse tissues, particularly in the heart and brain. This is the first demonstration of Ndrg2 protein expression in both embryonic and adult mouse tissues. Our results suggest that NDRG2 plays important roles in histogenesis and organogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.