Air-stability is one of the most important considerations for the practical application of聽electrode materials in energy-harvesting/storage devices, ranging from solar cells to rechargeable batteries. The promising P2-layered sodium transition metal oxides (P2-Na
x
TmO
2
) often suffer from structural/chemical transformations when contacted with moist air. However, these elaborate transitions and the evaluation rules towards air-stable P2-Na
x
TmO
2
have not yet been clearly elucidated. Herein, taking P2-Na
0.67
MnO
2
and P2-Na
0.67
Ni
0.33
Mn
0.67
O
2
as key examples, we unveil the comprehensive structural/chemical degradation mechanisms of P2-Na
x
TmO
2
in different ambient atmospheres by using various microscopic/spectroscopic characterizations and first-principle calculations. The extent of bulk structural/chemical transformation of P2-Na
x
TmO
2
is determined by the amount of extracted Na
+
, which is mainly compensated by Na
+
/H
+
exchange. By expanding our study to a series of Mn-based oxides, we reveal that the air-stability of P2-Na
x
TmO
2
is highly related to their oxidation features in the first charge process and further propose a practical evaluating rule associated with redox couples for air-stable Na
x
TmO
2
cathodes.
Slow lithium diffusion kinetics of H1 phase during discharge determines the initial irreversible capacity loss of NCM-based materials. By controlling lithium diffusion rate in the discharge process, extra capacity is obtained in the materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.