SUMMARY
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs.DOI:
http://dx.doi.org/10.7554/eLife.16582.001
Excessive accumulation of triacylglycerol in peripheral tissues is tightly associated with obesity and has been identified as an independent risk factor for insulin resistance, type 2 diabetes, and cardiovascular complications. Here we show that ablation of carboxylesterase 3 (Ces3)/triacylglycerol hydrolase (TGH) expression in mice (Tgh(-/-)) results in decreased plasma triacylglycerol, apolipoprotein B, and fatty acid levels in both fasted and fed states. Despite the attenuation of very low-density lipoprotein secretion, TGH deficiency does not increase hepatic triacylglycerol levels. Tgh(-/-) mice exhibit increased food intake, respiratory quotient, and energy expenditure without change in body weight. These metabolic changes are accompanied by improved insulin sensitivity and glucose tolerance. Tgh(-/-) mice have smaller sized pancreatic islets but maintain normal glucose-stimulated insulin secretion. These studies demonstrate the potential of TGH as a therapeutic target for lowering blood lipid levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.