Tungsten is regarded as the baseline first wall material in tokamaks. This work provides a polarized method for measuring the emissivity and temperature of the tungsten using an infrared camera and a polarizer under simulating tokamak conditions. In the experiment, a polarizer with an adjustable polarization direction is set up in front of an infrared camera. A rotatable fixture is used to fix the sample and change the angle between the surface and the normal. The sample is rotated from 0° to 80°, and the polarized emissivity first increases and then decreases with increasing rotation angle. The uncertainty in emissivity resulting from this polarized method and non-polarized method is analyzed. To compare the effects of the polarized method and the non-polarized method, the rotation angle is adjusted to 0°, and a fitting model is used to describe the relationship between emissivity and temperature. Errors between the calculated temperature and measured temperature are used as a scale, and the polarized method improves the accuracy of temperature measurement. This polarized method provides a technical way to measure the emissivity and temperature in a tokamak and can be applied in other similar applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.