To understand the effects of Ag nanoparticles (NPs) on the performance of organic solar cells, we examined the properties of hybrid poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric-acid-methyl-ester:Ag NP solar cells using photoinduced charge extraction with a linearly increasing voltage. We find that the addition of Ag NPs into the active layer significantly enhances carrier mobility but decreases the total extracted carrier. Atomic force microscopy shows that the Ag NPs tend to phase segregate from the organic material at high concentrations. This suggests that the enhanced mobility results from carriers traversing Ag NP subnetworks, and that the reduced carrier density results from increased recombination from carriers trapped on the Ag particles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3601742
We present a plasmonic nanostructure design by embedding a layer of hexagonal periodic metallic nanospheres between the active layer and transparent anode for bulk heterojunction organic solar cells. The hybrid structure shows broadband optical absorption enhancement from localized surface plasmon resonance with a weak dependence on polarization of incident light. We also theoretically study the optimization of the design to enhance the absorption up to 1.90 times for a typical hybrid active layer based on a low band gap material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3577611
We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.