Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, and currently the second most common cause of cancer-related deaths worldwide with increasing incidence and poor prognosis. Exosomes are now considered as important mediators of host anti-tumor immune response as well as tumor cell immune escape. HCC-derived exosomes have been shown to attenuate the cytotoxicity of T-cells and NK cells, and promote the immuno-suppressive M2 macrophages, N2 neutrophils, and Bregs. These exosomes harbor several immune-related non-coding RNAs and proteins that drive immune-escape and tumor progression, and thus may serve as potential diagnostic biomarkers and therapeutic targets for HCC. In a previous study, we identified miR146a as an exosomal factor that promotes M2-polarization and suppresses the anti-HCC function of T-cells. In this review, we summarized the role of tumor-derived exosomes and their key components in mediating tumor immune escape during HCC development.
The proliferation cell nuclear antigen (PCNA) is a critical protein required for DNA replication in proliferating cells including cancer cells. However, direct inhibition of PCNA in cancer cells has been difficult due to the lack of targetable sites. We previously reported that phosphorylation of tyrosine 211 (Y211) on PCNA is important for the proliferative function of PCNA when this protein is associated with the chromatin in cancer cells. Here, we show that the Y211 phosphorylation of PCNA is a frequent event in advanced prostate cancer. To explore the potential of this signaling event in inhibition of cancer cell growth, we used a synthetic peptide, the Y211F peptide, which when present inhibits phosphorylation of Y211 on endogenous PCNA. Treatment with this peptide, but not a scrambled control peptide, resulted in S-phase arrest, inhibition of DNA synthesis, and enhanced cell death in a panel of human prostate cancer cell lines. In addition, treatment with the Y211F peptide led to decreased tumor growth in PC3-derived xenograft tumors in vivo in nude mice. Our study shows for the first time that PCNA phosphorylation at Y211 is a frequent and biologically important signaling event in prostate cancer. This study also shows a proof of concept that Y211 phosphorylation of PCNA may be used as a therapeutic target in prostate cancer cells, including cells of advanced cancers that are refractory to standard hormonal therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.