With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.
Aflatoxins represent a global public health and economic concern as they are responsible for significant adverse health and economic issues affecting consumers and farmers worldwide. Produced by fungal species from the Aspergillus genus, aflatoxins are a toxic, mutagenic, and carcinogenic group of fungal metabolites that routinely contaminate food and agricultural products. Climate and diet are essential factors in the aflatoxin contamination of food and subsequent human exposure process. Countries with warmer climates and staple foods that are aflatoxin‐susceptible shoulder a substantial portion of the global aflatoxins burden. Enactment of regulations, prevention of pre‐ and postharvest contamination, decontamination, and detoxification have been used to prevent human dietary exposure to aflatoxin. Exploiting their chemical and structural properties, means are devised to detect and quantify aflatoxin presence in foods. Herein, recent developments in several important aspects impacting aflatoxin contamination of the food supply, including: fungal producers of the toxin, occurrence in food, worldwide regulations, detection methods, preventive strategies, and removal and degradation methods were reviewed and presented. In conclusion, aflatoxin continues to be a major food safety problem, especially in developing countries where regulatory limits do not exist or are not adequately enforced. Finally, knowledge gaps and current challenges in each discussed aspect were identified, and new solutions were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.